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Main text
Ewing sarcoma (EwS) is an aggressive bone- or soft tissue-
associated malignancy, characterised by the fusion onco-
protein EWSR1-FLI1 [1]. Over the past decades further 
therapeutic development for this devastating childhood 
tumour has remained relatively stagnant [2], especially 
for patients with metastatic or recurrent disease [3, 4]. 
To develop more effective and specific treatment options 
we investigated potential therapeutic targets by exploring 
putative downstream genes of EWSR1-FLI1.

We took advantage of publicly available ‘omics’ data 
and filtered them in a multi-step approach (Fig.  1a): 
First, we interrogated a gene expression dataset compris-
ing 50 primary EwS and 929 samples from 71 normal 
tissue types to identify overexpressed genes (min. log2 
fold increase = 2) in EwS, which yielded 292 candidates 
(Fig.  1b, Supplementary Table  1). Second, we filtered 
for those genes whose overexpression was significantly 
negatively correlated with patients’ overall survival in a 
dataset of matched gene expression and survival data of 

166 EwS patients [5] that covered 280 of the 292 over-
expressed genes (96%) (Fig.  1c), identifying 22 candi-
dates (Supplementary Table  1). Third, we focused on 
druggable targets possessing kinase or other enzymatic 
functions for which specific inhibitors and their phar-
macokinetic data were available, but were still not (pre)
clinically tested in EwS. This survey identified ribonu-
cleotide reductase regulatory subunit M2 (RRM2) as 
the single putative target with a prominently negative 
association with patients’ overall survival (Fig.  1d). The 
ribonucleotide reductase (RNR) catalyses the conver-
sion of ribonucleoside diphosphates to deoxyribonucleo-
side diphosphates, the rate-limiting process for de novo 
deoxyribonucleoside triphosphates synthesis. RNR is 
composed of two subunits, ribonucleotide reductase cat-
alytic subunit M1 (RRM1) and either RRM2 or ribonu-
cleotide reductase regulatory TP53 inducible subunit M2 
(RRM2B) [6]. Notably, RRM2B is neither overexpressed 
in EwS nor negatively correlates with patients’ outcome 
(Supplementary Figs.  1a,b), and RRM1 is far less over-
expressed in EwS compared to RRM2 (Supplementary 
Figs.  1a,b,c). Similar to primary EwS tumours, assess-
ment of transcriptomes from 18 EwS cell line models 
(including A-673 and TC-71) also exhibited that, while 
RRM2 and RRM1 were similarly highly expressed in EwS 
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cell line models, RRM2 was on average ~ ninefold higher 
expressed than RRM2B (P < 0.0001). These observations, 
together with the absence of a negative survival asso-
ciation of RRM2B in EwS (Supplementary Fig. 1b), sug-
gested that RRM2B, although being structurally similar 
to RRM2 [6], may play a subordinate role in EwS.

Prior reports suggested that RRM2 may contribute to 
the proliferative phenotype of EwS [7, 8]. However, its 
role in primary EwS tumours remains unclear. To gain 
first insights into the biological function of RRM2 in EwS, 
we carried out gene ontology (GO) enrichment analysis 
of RRM2 co-expressed genes in 166 EwS tumours, which 
revealed that high RRM2 expression is closely corre-
lated with cell proliferation-associated gene signatures 
(Fig.  1e), suggesting that high RRM2 expression may 
contribute to an aggressive clinical course by promoting 
tumour growth. Next, we analysed the potential associa-
tion between RRM2 protein levels, clinicopathological 
prognostic factors, and clinical outcomes in tissue micro-
arrays (TMA) from EwS tumours of 122 patients (Supple-
mentary Table  2, Supplementary Fig.  2a). In agreement 
with the findings at the mRNA level (Fig. 1d), high RRM2 
protein expression was significantly (P = 0.0095) associ-
ated with poor overall survival (Fig. 1f ). Correspondence 
analyses of individual cohorts and the joint-cohort (after 
exclusion of 6 samples (3.6%) from the mRNA-cohort 
that were in overlap with the TMA cohort) revealed that 
high RRM2 expression was significantly associated with 
metastatic disease at diagnosis (P = 0.0004) and occur-
rence of metastatic and/or local relapse (P = 0.0095; only 
available for the TMA cohort) (Supplementary Table 3), 
supporting that high RRM2 expression promotes an 
aggressive phenotype. Conversely, RRM2 inhibition by 
doxycycline (Dox)-inducible shRNA-mediated gene 
silencing inhibited proliferation and clonogenic growth of 
three EwS cell lines, and induced cell death in vitro (Sup-
plementary Figs.  2b,c). Consistent with these functional 

experiments, transcriptome profiling upon RRM2 silenc-
ing in two EwS cells demonstrated downregulation of cell 
cycle and proliferation-associated gene signatures (Sup-
plementary Fig. 2d). Similarly, RRM2 knockdown signifi-
cantly reduced tumour growth of two xenografted EwS 
cells (Figs.  1g,h). This antineoplastic effect was accom-
panied by increased apoptosis and DNA damage, as 
assessed by immunohistochemistry for cleaved caspase 3 
(CC3) and γH2A.X, respectively (Fig. 1i, Supplementary 
Fig. 2e).

Generally, the activity of RNR can be blocked by irre-
versible RRM1 inhibition using gemcitabine, or by 
RRM2-specific inhibitors such as hydroxyurea or the 
more potent compound triapine (alias 3-AP) [6, 9]. 
Although gemcitabine is used for palliative treatment 
of EwS patients, EwS tumours rapidly develop a relative 
resistance [10]. Consistently, we found that long-term 
treatment of EwS cells with ascending doses of either 
doxorubicin (A-673, ES7, EW-7, TC-71), gemcitabine 
(A-673, ES7, TC-71) or triapine (A-673) led to acquisi-
tion of relative resistance phenotypes in  vitro (Supple-
mentary Fig.  3a), where we noted a relatively fast and 
strong increase of the relative resistance towards gem-
citabine (> 2,000-fold increase in  IC50 within ~ 6  weeks), 
compared doxorubicin (~ fourfold increase in ~ 28 weeks) 
and triapine (~ sevenfold increase in ~ 20  weeks) (Sup-
plementary Fig. 3b), further suggesting that gemcitabine 
has limited potential for clinical treatment with curative 
intent. Thus, we focused on triapine for further func-
tional analyses. First, to assess functional dependency 
of triapine on RRM2 expression, we performed drug-
response assays using triapine in EwS cells with/without 
RRM2 silencing, which demonstrated that knockdown of 
RRM2 led to a ~ twofold decrease of the IC50 for triapine 
in A-673 EwS cells, indicating that higher doses of the 
drug are required to fully block RRM2 activity in case of 
high RRM2 expression (Supplementary. Figure 3c). Such 

(See figure on next page.)
Fig. 1 RRM2 is highly overexpressed in EwS, correlates with poor patient outcome, and constitutes a putative therapeutic target. a Schematic 
description of the filtering process for identification of therapeutically relevant target candidates. b Analysis of RRM2 mRNA expression levels 
in 50 EwS primary tumours compared to 929 normal tissues samples from 71 tissue types. Data are shown as log2 fold increase normalized to 
expression values of normal tissues. The dotted line indicates the cut‑off value of 2 for candidate selection. c Analysis of overall survival time of 166 
EwS patients stratified for candidate gene expression. P‑values (–log10) were determined in Kaplan–Meier analyses using a Mantel–Haenszel test 
(Bonferroni‑adjusted for multiple testing). The dotted line indicates a significance value of 1.3. d Kaplan–Meier survival analysis of 166 EwS patients 
stratified by the  78th percentile RRM2 expression. P‑value determined by log‑rank test. e Left: Heat map for gene expression which is positively or 
negatively correlated with RRM2 expression in 166 EwS. Right: Gene ontology (GO) enrichment analysis of RRM2 and its co‑expressed genes derived 
from gene expression data sets of 166 EwS tumours. Pearson correlation coefficients between RRM2 and other genes were determined, of which 
those with |rPearson|> 0.5 were further analysed by GO enrichment analysis. f Kaplan–Meier survival analysis of 122 EwS patients stratified by RRM2 
protein expression (low IRS ≤ 2, high IRS > 2). P‑values were determined by log‑rank test. g Analysis of tumour growth of EwS cell lines A‑673 and 
TC‑71 harbouring Dox‑inducible shRRM2 constructs or non‑targeting shRNA (shControl) xenografted in NSG mice. Once tumours were palpable, 
animals were randomized in Dox ( +) or Dox (–) group. Tumour growth on time course and h Tumour weight at the experimental endpoint. Arrows 
indicate treatment start. Values were normalized to Dox (–). Horizontal bars represent means and whiskers SEM. FC, fold change. P‑values were 
calculated at the experimental endpoint with two‑sided (tumour growth) or one‑sided (tumour weight) Mann–Whitney test. i Quantification of 
positive cells for cleaved caspase‑3 (CC3) (left) and γH2A.X (right). Values were normalized to Dox (–). Horizontal bars represent means and whiskers 
SEM. FC, fold change. P‑values were calculated at the experimental endpoint using a two‑sided Mann–Whitney test
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Fig. 1 (See legend on previous page.)
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differential effect on sensitivity towards triapine was not 
observed in A-637 cells expressing a non-targeting con-
trol shRNA. Moreover, we observed an ~ twofold increase 
of RRM2 expression in triapine-resistant A-673 (A-673/
TR) compared to parental A-673 EwS cells, suggesting 
that RRM2 upregulation can be a potential mechanism 
for acquiring triapine-resistance in A-673 EwS cells (Sup-
plementary Fig. 3d). Dose–response assays revealed that 
EwS cells were very sensitive towards triapine compared 
to osteosarcoma cells and non-transformed EwS patient-
derived mesenchymal stem cells (mean  IC50 values 0.35, 
1.63, 101.63  µM, respectively) (Fig.  2a). Likewise, tria-
pine treatment significantly reduced clonogenic growth 
of EwS cells at clinically relevant doses [11, 12] (Fig. 2b). 
Interestingly, doxorubicin or gemcitabine resistant EwS 
cells (designated EwS/DR or EwS/GR, respectively) still 
retained triapine sensitivity (Fig.  2c), suggesting thera-
peutic potential of triapine for EwS refractory towards 
conventional chemotherapy. Strikingly, we could con-
firm a significant reduction of tumour growth by tria-
pine treatment compared to controls in a subcutaneous 
xenograft model (Fig.  2d). Although triapine treatment 
was accompanied by weight loss (on average ~ 5% at the 
experimental endpoint) (Supplementary Fig. 3e), no mor-
phological changes of inner organs were observed includ-
ing the gastrointestinal tract as assessed by histological 
analysis (Supplementary Fig.  3f ). Although it is inter-
esting to note that EwS cells resistant to gemcitabine, 
which covalently binds and thus inactivates RRM1 [13], 
still retain sensitivity towards triapine (Fig. 2c), it should 
be noted that triapine may not be entirely specific for 
RRM2. Triapine presumably disrupts a tyrosyl free radi-
cal by labilising di-iron molecules on the small subunits 
of ribonucleotide reductase [6, 14]. This proposed mech-
anism of action for triapine can clinically manifest as a 
reversible adverse effect such as methemoglobinemia, 
which is probably caused by the iron chelating effect of 

triapine, interrupting recovery cycles from methaemo-
globlin to haemoglobin [15]. To mitigate this toxicity, the 
small molecule COH29 has been developed that, upon 
binding to RRM2 subunits, interferes with the molecular 
interface of RRM1 and RRM2 subunits and thus inhib-
its its reductase function [14]. Yet, its clinical efficacy and 
safety remain to be investigated. Another approach for 
more specific RRM2 inhibition has been undertaken with 
antisense oligonucleotide-based techniques, exemplified 
by therapeutic silencing of RRM2 by GTI-2040, which, 
however, showed little clinical benefit in several clinical 
trials [16–18]. Hence, despite our data strongly support 
RRM2 as an actionable and valuable drug target in EwS, 
and triapine as a potential lead candidate drug for pref-
erential RRM2 inhibition, the development of even more 
specific RRM2 inhibitors is desirable.

We next explored effective drug combinations with 
triapine. Based on known functions of RRM2 in DNA 
synthesis and DNA repair [6] we examined combina-
tory applications of triapine with standard chemothera-
peutics, doxorubicin, etoposide or vincristine, or poly 
ADP-ribose polymerase (PARP) inhibitors. Unexpect-
edly, we observed rather antagonistic effects (Supple-
mentary Figure  4a). To identify rational combinations, 
we analysed integrated transcriptome profiles of two 
EwS cells upon RRM2 silencing and triapine treat-
ment, revealing 263 commonly up- and downregulated 
genes (Supplementary Table  4). GO enrichment analy-
sis demonstrated significant enrichment for cell cycle-
associated processes, especially regulation of mitotic 
cell cycle-associated genes (Fig.  2e), which is consist-
ent with the observation that RRM2 inhibition caused 
G1/S-phase cell cycle arrest [19, 20]. Thus, we reasoned 
that RRM2 may synergise with checkpoint inhibi-
tors targeting CHEK1 (checkpoint kinase 1) or WEE1 
(WEE1 G2 checkpoint kinase), which were highly sig-
nificantly (P < 0.0001) co-expressed with RRM2 in 166 

Fig. 2 Triapine inhibits EwS growth in vitro and in vivo and synergise with cell cycle checkpoint inhibitors in vitro. a Dose–response analysis of 
triapine in EwS, osteosarcoma and mesenchymal stem cells. b Analysis of clonogenic growth of A‑673, TC‑71, and EW‑7 EwS cells upon triapine 
treatment. c Left: Dose–response analysis of triapine in chemoresistant EwS cells (A‑673/DR or A‑673/GR). Right: magnitudes of doxorubicin or 
gemcitabine resistance shown by fold increase in  IC50 compared to those of parental cells. d Analysis of tumour growth upon triapine treatment 
in A‑673 cell line in vivo. Images of resected xenografts (upper), tumour growth (lower left), and tumour weight at the experimental endpoint 
(lower right) of NSG mice xenografted with A‑673 EwS cells upon treatment with triapine. Once tumours reached 5 mm in average diameter, 
animals were randomized in treatment group (30 mg/kg i.p.) or control group (DMSO) (n = 8 animals per group). The arrow indicates treatment 
start. Horizontal bars represent means and whiskers SEM. P‑values were calculated at the experimental endpoint with two‑sided (tumour growth) 
or one‑sided (tumour weight) Mann–Whitney test. e Integrative Gene Ontology (GO) enrichment analysis of gene expression microarray data 
generated in A‑673 and ES7 cells after RRM2 silencing or pharmacological RRM2 inhibition by triapine (corresponding  IC50 of 0.44 µM or 0.65 µM, 
respectively). f Correlation of gene expression between RRM2 and CHEK1 or WEE1 in 166 EwS. Each dot represents an individual expression value. 
Solid red lines indicate a trend line created by a simple linear regression. P‑values were calculated by a two‑tailed t‑test. g Drug interaction and 
combination efficiency analysis between triapine and CHEK1 inhibitor (CCT245737) or WEE1 inhibitor (MK‑1775) in 4 EwS cell lines (A‑673, ES7, 
EW‑7, TC‑71) assessed by combination index. CI value < 1 indicative of synergistic, CI = 1 additive, and CI > 1 antagonistic h Drug interaction and 
combination efficiency estimation between triapine and CHEK1 inhibitor (CCT245737) or WEE1 inhibitor (MK‑1775) in A‑673 EwS cell line assessed 
by SynergyFinder 2.0. ZIP synergy score > 10, likely to be synergistic; between –10 and 10, likely to be additive; < –10, likely to be antagonistic

(See figure on next page.)
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EwS tumours (Fig.  2f ). In drug combination assays we 
observed a strong synergism between triapine and a 
CHEK1 inhibitor (CCT245737) or a WEE1 inhibitor 
(MK-1775) across four EwS cells (Fig.  2g,h, Supplemen-
tary Fig.  4b). Overall, these results provide a rationale 
for therapeutic combination of triapine with cell cycle 

checkpoint inhibitors. A recent study pointed out that the 
drug combination of hydroxyurea and a CHEK1 inhibi-
tor (GDC-0575) can circumvent toxicities caused by 
the combination of gemcitabine and GDC-0575, which 
may imply a more manageable combinatory application 
through RRM2 inhibition and CHEK1 inhibitors [21].

Fig. 2 (See legend on previous page.)
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Conclusions
Collectively, our results establish RRM2 as a promising 
actionable therapeutic target for EwS, even in chemo-
therapy-refractory cases, and suggest that the combina-
tion of triapine with cell cycle checkpoint inhibitors may 
be highly effective. Moreover, our integrative study of 
two independent cohorts provides evidence for RRM2 
as novel and robust prognostic biomarker that can be 
readily assessed by immunohistochemistry in routine 
diagnostics. Thus, our findings may have immediate 
translational relevance for patients affected by this dev-
astating disease.
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