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Rabeprazole inhibits inflammatory reaction
by inhibition of cell pyroptosis in gastric
epithelial cells
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Abstract

Background: Helicobacter pylori (H. pylori) is a common pathogen in development of peptic ulcers with pyroptosis.
Rabeprazole, a critical component of standard triple therapy, has been widely used as the first-line regimen for H.
pylori infectious treatment. The aim of this study to explore the function of Rabeprazole on cell pyroptosis in vitro.

Methods: The clinical sample from patients diagnosed with or without H. pylori-infection were collected to analyze
by Immunohistochemistry (IHC). Real-time quantitative PCR (qPCR), western blot (WB) and enzyme linked
immunosorbent assay (Elisa) were performed to analyze the effect of Rabeprazole on cell pyroptosis, including LDH,
IL-1β and IL-18.

Results: In this study, we showed that Rabeprazole regulated a phenomenon of cell pyroptosis as confirmed by
lactate dehydrogenase (LDH) assay. Further results showed that Rabeprazole inhibited cell pyroptosis in gastric
epithelial cells by alleviating GSDMD-executed pyroptosis, leading to decrease IL-1β and IL-18 mature and secretion,
which is attributed to NLRP3 inflammasome activation inhibition. Further analysis showed that ASC, NLRP3 and
Caspase-1, was significantly repressed in response to Rabeprazole stimulation, resulting in decreasing cleaved-
caspase-1 expression. Most important, NLRP3 and GSDMD is significantly increased in gastric tissue of patients with
H. pylori infection.

Conclusion: These findings revealed a critical role of Rabeprazole in cell pyroptosis in patients with H. pylori
infection, suggesting that targeting cell pyroptosis is an alternative strategy in improving H. pylori treatment.
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Background
A standard triple therapy, including the proton pump in-
hibitors (PPIs) and antimicrobial agents, such as amoxi-
cillin, clarithromycin, metronidazole, and levofloxacin, is
widely used as the first-line regimen for treatment of

Helicobacter pylori infection [1–3]. Helicobacter pylori
is a microbial carcinogen of gram-negative bacteria,
which has been believed to be associated with the devel-
opment of chronic gastritis, peptic ulcer disease, and
gastric cancer (GC), leading dysfunction of inflammation
[4–6], such as gastric mucosa-associated lymphoid tissue
lymphoma (MALT) [7–9]. Recently, more and more at-
tention was focused on the biological function of PPIs.
We have showed that omeprazole suppressed De novo
lipogenesis (DNL) in gastric cancer cells by inhibition of
fatty acid synthase (FASN) and acetyl-CoA carboxylase
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(ACCA) [10], while Rabeprazole was demonstrated to
inhibit cell proliferation by targeting signal transducer
and activator of transcription 3 (STAT3)-mediated HK2
expression [11]. Furthermore, rabeprazole has been re-
ported to regulate DNA-PKcs dependent topoisomerase
I degradation and irinotecan drug resistance in colorec-
tal cancer through CTD small phosphatase 1 (CTDSP1)
[1]. However, the potential function of PPIs remained to
be identified in the future work.
Cell pyroptosis, a common phenomenon between

host-pathogen interactions, may lead to host cells death
and release pro-inflammatory factors expression, such as
IL-1β and IL-18 to aggravate inflammatory reaction [12,
13]. Inflammasomes are multiprotein complexes that ac-
tivate caspase-1, leading to maturation of the proinflam-
matory cytokines IL-1β and IL-18 and the induction of
pyroptosis [14]. In general, intracellular pathogens was
recognized by the NOD-like receptors (NLPs), especially
NLR family pyrin domain containing 3 (NLRP3) to form
NLRP3 inflammasome activation, which further acti-
vated caspase-1 [15]. The activation of caspase-1 cleaved
gasdermin D (GSDMD), IL-1β and IL-18 into mature
form, enabling cell membrane pore-formation for the re-
lease of IL-1β and IL-18 and triggering of pyroptosis
[16]. These stimuli, including exogenous (bacterial he-
molysins, pneumolysin, etc.) and endogenous (ATP, uric
acid crystals, etc.) factors, activate and prime the inflam-
masome [14]. In addition to pathogen or LPS stimula-
tion, another study demonstrated that saturated fatty
acids (SFAs) promoted NLRP3 inflammasome activation
driven by metabolically activated macrophages through
IER1a, leading to secrete IL-1β [17]. Most important,
mature of SREBP-1c mediated by serials stimulation
could directly activate metabolism to trigger NLRP
inflammasomes activation in NK cell and macrophages
[18–20]. These findings suggested that activation of
NLRP3 inflammasomes could be triggered not only limit
to host-pathogen interactions. However, the influence of
Rabeprazole, an inhibitor of proton pump, in NLRP3-
mediated cell pyroptosis remained unknown.
PPIs were sufficient to inhibit the gastric proton

pumps by forming disulfide bonds between cysteine resi-
dues located in the luminal vestibule of the proton
pumps through their acid-activated form [21], resulting
in a rapid and sustained inhibition of intracellular proton
efflux, as well as elevating the extracellular pH [22, 23].
In addition to our previous work showed that omepra-
zole suppressed De novo lipogenesis in gastric epithelial
cells [10], and Rabeprazole has been demonstrated to re-
duce STAT3-mediated HK2 expression, leading to in-
hibit cell proliferation [11]. Herein, we further showed
that Rabeprazole significantly decreased IL-1β and IL-18
release by inhibition of NLRP3 activation in BGC823
cells, leading to reduce caspase-1 activation. This

phenomenon is attributed to the reduction of NF-KB ac-
tivity caused by Rabeprazole. These finding suggested
that Rabeprazole is a sufficient to alleviate inflammatory
disease, targeting to cell pyroptosis by Rabeprazole could
be effective to improve therapy outcome in patients.

Methods
Cell culture, treatment, reagents, and antibodies
Dulbecco’s modified eagle medium (DMEM) and fetal
bovine serum (FBS) were purchased from life technolo-
gies (Kalamazoo, MI, USA). BGC823 cells were
employed to be in vitro model to study the function of
Rabeprazole [11]. The human gastric epithelial cell
BGC823 was purchased from the American Type Cul-
ture Collection (ATCC, Manassas, VA, USA) and cul-
tured in DMEM supplemented with 10% FBS. The cells
were maintained at 37 °C in a humidified 5% CO2 incu-
bator. Pierce™ BCA protein assay Kit and PageRuler™
Prestained Protein Ladder were purchased from thermo
fisher, trizol was from invitrogen (Invitrogen, Thermo
Fisher Scientific). All-in-one™ first-strand cDNA synthe-
sis kit and All-in-one™ qPCR mix were from Geneco-
poeia™ (Rockville, MD, USA). Rabeprazole (S4845) was
purchased from Selleck. LPS (BS904) was purchased
from Biosharp. Other chemical reagents were from
Sigma. Antibodies were purchased from Abcam:
NLRP3(Abcam; ab260017, 1:2000 for WB); IL-
18(Abcam; ab235697, 1:1000 for WB); IL-1β (Abcam;
ab216995, 1:1000 for WB); ASC (Abcam; ab151700, 1:
2000 for WB); GSDMD (Abcam; ab210070, 1:2000 for
WB); Human IL-18 ELISA Kit (ab215539) and Human
IL-1 β ELISA Kit (ab217608) were purchased from
Abcam. β-actin (AC038) purchased from Abclonal. For
treatment, BGC823 cells were stimulated for rabeprazole
(10uM) for 1 h, following by LPS (500 ng/mL) treatment
for further 48 h.

Real-time PCR
As described in Zhang et al. study [24], the total RNA was
extracted by trizol and converted to cDNA using the All-
in-one™ first-strand cDNA synthesis kit and amplified by
PCR using the All-in-one™ qPCR mix according to the
manufacturer’s instructions. Primer used in this study were
synthesized and listed as followed: IL-1β:Forward:5′-ATGA
TGGCTTATTACAGTGGCAA-3′, Reverse: 5′- GTCGGA
GATTCGTAGCTGGA-3′; IL-18:Forward:5′-TCTTCA
TTGACCAAGGAAATCGG-3′, Reverse: 5′-TCCGGGGT
GCATTATCTCTAC-3′; GSDMD:Forward:5′-GTGTGT
CAACCTGTCTATCAAGG-3′, Reverse: 5′-CATGGCAT
CGTAGAAGTGGAAG-3′; NLRP3:Forward:5′-GATCTT
CGCTGCGATCAACAG-3′, Reverse: 5′-CGTGCATTAT
CTGAACCCCAC-3′; ASC:Forward:5′-TGGATGCTCT
GTACGGGAAG-3′, Reverse: 5′-CCAGGCTGGT
GTGAAACTGAA-3′; Caspase-1:Forward:5′-CCTTAATA
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TGCAAGACTCTCAAGGA-3′, Reverse: 5′-TAAGCTGG
GTTGTCCTGCACT-3′; UBC: forward, 5′-ATTTGGGT
CGCGGTTCTTG-3′ and reverse, 5′-TGCCTTGACA
TTCTCGATGGT-3′.

Immunoblotting analysis
Immunoblotting was performed as described in our pre-
vious study [25], the whole cells were harvested and ex-
tracted in BGC823 cell after treatment, followed by
SDS-PAGE. the membranes were blocked in TBST with
5% milk for 1 h and washed with PBS for 5 min. After in-
cubation overnight with indicated primary antibodies, a
secondary antibody conjugated horseradish peroxidase
was added to incubate for another 1 h. the proteins were
detected using an ECL reagent.

Elisa assay
IL-1β (ab229384) and IL-18(ab215539) in culture super-
natants were measured and quantitated for the indicated
group by ELISA according to the manufacturer’s instruc-
tions, respectively.

Relative cell death assays
LDH assay kit (abcam, ab102526) was used to analyze
LDH in supernatants from BGC823 cells treated in the
experiment according to the manufacturer’s instructions.
Relative cell death was determined as described in Zhou
et al. study [26].

Immunohistochemistry
Immunohistochemistry was performed as described in
our previous work [10]. Berifly, after deparaffinization,
rehydration and blocking, the sections were incubated
with indicated antibody overnight at 4 °C, the slides were
immersed in peroxidase-labeled secondary antibody for
30 min at room temperature. To detect the antibody-
conjugated antigen reaction, the sections were incubated
with 3-amino- 9-ethylcarbazole substrate-chromogen for
30 min and counterstained with hematoxylin.

Statistical analysis
GraphPad Prism V software (La Jolla, CA, USA) was ap-
plied to perform data analysis. A p less than 0.05 was
considered statistical difference. Statistical differences
among groups were determined by Student’s t-test, one-
way ANOVA was used to determine the significance for
mRNA and intensity quantified.

Results
Rabeprazole attenuated cell pyroptosis in BGC823 cells
It has been reported that disrupted glycolysis promotes
pyroptosis in muscle cells by activating the NLRP3
inflammasome [27]. Our pervious study has addressed
that Rabeprazole treatment in gastric epithelial cells led

to a significant inhibition of hexokinase 2 (HK2)-medi-
ated glycolysis [11], which focused us to explore the
function of Rabeprazole on cell pyroptosis. LDH release
assay were performed to measure in BGC823 cells
treated with Rabeprazole (10uM) in a time course. As
shown in the Fig. 1A, Orphologically, a smaller number
of dead cells were observed in BGC823 cells treated with
Rabeprazole compared with control group. LDH release
assay further revealed cell death was reduced in response
to Rabeprazole stimulation (Fig. 1B). these findings im-
plied that Rabeprazole has an anti-pyroptosis effect.

Rabeprazole inhibited GSDMD activation and IL-1β and
IL-18 release
The above results suggested that Rabeprazole suppressed
cell pyroptosis in gastric epithelial cells. GSDMD served
as a pivotal executioner [28, 29], which attracted us to
identify the pyroptosis-related genes responsible for
Rabeprazole treatment. Our results demonstrated that
Rabeprazole treatment led to a remarkable downregula-
tion of pro-inflammatory cytokines IL-1β and IL-18 ex-
pression by real-time PCR (Fig. 2A) and Elisa assay (Fig.
2B), which was attributed to the decreased mature
GSDMD expression caused by rabeprazole stimulation
in western blotting analysis (Fig. 2C). these findings sug-
gested that Rabeprazole attenuated GSDMD-executed
pyroptosis.

Rabeprazole regulated pyroptosis by repressing NLRP3
inflammasome activation
NLRP3 inflammasome is currently the well-known char-
acterized inflammasome and consists of NLRP3,
apoptosis-associated speck-like protein containing a
CARD (ASC), and caspase-1, which focused our attention
to seek the effect of Rabeprazole on NLRP3 inflamma-
some. As expected, real-time PCR assay demonstrated
that NLRP3 and ASC expression as well as Caspase 1 acti-
vation were drastically attenuated in BGC823 cells treated
with Rabeprazole (10uM) for 72 h (Fig. 3A). In line with
this, WB and quantified results also showed that Rabepra-
zole treatment resulted in a significant downregulation of
Caspase-1 activation and NLRP3 as well as ASC at protein
expression level (Fig. 3B-C). What’s more, Rabeprazole
treatment significantly reversed NLRP3 inflammasomes
induced by LPS (500 ng/mL) stimulation in BGC823 cells
(Fig. 3D-E). These findings suggested that Rabeprazole
suppressed cell pyroptosis to alleviate inflammation
through repressing NLRP3 inflammasome activation in
gastric epithelial cells.

Enrichment of inflammasome in gastric mucosa tissue
The above results showed that Rabeprazole, an PPI for
H. pylori treatment, alleviated inflammation by inhib-
ition of GSDMD-mediated pyroptosis in BGC823 of
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Fig. 1 The effect of Rabeprazole on pyroptosis. (A) Representative images (100X) of BGC823 cells treated with or without Rabeprazole (10uM) for
48 h, magnification: 400X; (B) The LDH assay was performed to detect cell death in response to Rabeprazole treatment as indicated in various
time points. Data represented the mean ± s.e.m. n = 3, t test, *p < 0.05, **p < 0.01 versus con group

Fig. 2 Rabeprazole inhibited GSDMD expression, IL-1β and IL-18 release. (A) After treatment with or without rabeprazole (10uM) for 48 h, the
total RNA was collected and extracted with trizol from BGC823 cells. The indicated genes were analyzed by real-time PCR assay, n = 3, t test,
***p < 0.001 versus con group; (B) BGC823 cells were treated as indicated for 48 h, and supernatant of IL-1β and IL-18 were determined by Elisa
assay, data represent the mean ± s.e.m. n = 3, t test, **p < 0.01, ***p < 0.001 versus con group; (C) while the total protein of GSDMD expression, IL-
1β and IL-18 were examined by western blotting, (D) the relative protein intensity was quantified and analyzed by t test, data represented the
mean ± s.e.m. n = 3, ***p < 0.001 versus con group
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gastric cells, which attracted us to explore GSDMD ex-
pression in gastric mucosa. As shown in Table 1, a total
of 36 clinical gastric mucosa samples, including
23(63.9%) boys and 13 (36.1%) girls with an age between
3 to 16 years (median age = 9), were collected from
Guangzhou Women and Children’s Medical Center. The
subject was divided into 14 (38.8%) H. pylori (−) control
subjects and 22(61.2%) H. pylori (+) gastric tissue sub-
jects, respectively. Detailed clinical characteristics of sub-
jects could be available upon reasonable request, which
is not public.
Next, we detected NLRP3 and GSDMD expression in

a set of gastric tissue diagnosed with H. pylori infection
in clinic by IHC to analyze the possible changes in re-
sponse to H. pylori. The results showed that GSDMD
and NLRP3 expression were increased in gastric mucosa
in gastric tissue with H. pylori infection (Fig. 4A-B).
Taken together, these findings suggested that excessive
inflammation activation and pyroptosis-related expres-
sion in the patients with Hp-infected gastric mucosa,

Fig. 3 Rabeprazole suppressed NLRP3 inflammasomes. (A) Real-time PCR and (B) western blotting were performed to analyze NLRP3, Caspase-1
and ASC expression in BGC823 cells treated with or without rabeprazole (10uM) stimulation for 48 h, data represented the mean ± s.e.m. n = 3, t
test, ***p < 0.001 versus con group, (C) the relative protein level was measured and quantified by t test, data represented the mean ± s.e.m. n = 3,
***p < 0.001 versus con group. (D) BGC823 cells were treated with rabeprazole (10uM) for 1 h, following by LPS stimulation for further 48 h as
indicated, the total protein was harvested and subjected to SDS-PAGE to detect GSDMD, Cleave-IL-1β and IL-18 expression. (D) the intensity of
band was quantified and analyzed by one-way ANOVA, data represented the mean ± s.e.m. n = 3, **p < 0.01, ***p < 0.001

Table 1 the characteristic of the subjects enrolled in this study

Variables Number of subjects (%)

Total Hp(−) Hp(+)

14 (38.8%) 22 (61.2%)

Age

< 9 5 (39.3%) 6 (28.6%)

> =9 9 (14.3%) 16 (17.8%)

Gender

boys 8 (22.2%) 15 (41.7%)

girls 6 (16.7%) 7 (19.4%)

Stage

+ 4 (18.2.%)

++ 7 (19.4%)

+++ 11 (50.0%)

Therapy Rabeprazole, amoxicillin and clarithromycin

Xie et al. BMC Pharmacology and Toxicology           (2021) 22:44 Page 5 of 9



and Rabeprazole is not only sufficient to suppress acid
secretion, but also to alleviate inflammation by pyropto-
sis suppression.

Discussion
Rabeprazole, an inhibitor of proton pump, is sufficient
to treat H. pylori infectious. However, the potential bio-
logical function of Rabeprazole is gradually to be eluci-
date. Previous study has revealed that omeprazole
regulated lipid content in BGC823 cells, leading to re-
duce lipid content [10]. Recently, another work from our
team demonstrated that Rabeprazole, another PPIs, sup-
pressed STAT3-mediated glycolysis, leading to cell pro-
liferation inhibition [11]. In this study, we further
addressed Rabeprazole inhibited cell pyroptosis by
destroying NLRP3 inflammasome, leading to decrease
Caspase-1 activation and IL-1β and IL-18 release, and
resulting in alleviating H. pylori-associated gastritis.
Most important, both NLRP3 and GSDMD expression
were increased in gastric cancer tissue of patients with
H. pylori infectious. Taken together, these results sug-
gested the novel function of Rabeprazole and implied a
novel insight that targeting cell pyroptosis is a promising

new approach to improve clinical outcome in patients
with H. pylori infection.
Recently, the study has showed that Rabeprazole regu-

lated amoebic proliferation and several functions required
for parasite virulence such as cytotoxicity, oxygen reduc-
tion to hydrogen peroxide, erythrophagocytosis, proteoly-
sis, and oxygen and complement resistances [30], also,
Rabeprazole could inhibit CTD small phosphatase 1
(CTDSP1) activity, causing irinotecan resistance in colo-
rectal cancer [31].in addition, Rabeprazole exhibits anti-
proliferative effects in human gastric cancer cell lines in
media with various pH level [32]. However, no direct
available reports about the rabeprazole in cell pyroptosis.
In our pervious study, we have demonstrated Rabepra-

zole suppressed HK2 expression, leading to inhibit gly-
colysis [11]. Interestingly, glycolysis has been reported to
promote cell pyroptosis by activating the NLRP3 inflam-
masome [27, 33, 34]. The inflammasome NLRP3 is a
molecular pathway activated by a wide range of cellular
insults to elicit innate immune defenses through the ac-
tivation of caspase-1 and the maturation of proinflam-
matory cytokines, such as IL-1βand IL-18 [35]. In line
with this, our work further showed that Rabeprazole
treatment led to a significant decreased IL-1β and IL-18

Fig. 4 GSDMD and NLRP3 were increased in gastric mucosa with H. pylori-infectious patients. Representative images (100X) of GSDMD expression
(A, left panel) and NLRP3 expression (B, left panel) in gastric mucosa sections with or without H. pylori infection, magnification: 400X; the
expression of indicated protein were assessed and quantified (A-B, right panel), Data represented the mean ± s.e.m. of three independent
experiments, t-test were used to analyze statistically significant, ***p < 0.001
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release, a production of cell pyroptosis. Furthermore,
both NLRP3 and ASC expression are drastically reduced
in response to Rabeprazole stimulation, leading to in-
hibit caspase-1 activation, GSDMD expression and ma-
ture IL-1β and IL-18 release. As NLRP3-mediated
pyroptotic cell death and activation of Caspase-1 and
GSDMD was the key event during cell pyroptosis [26],
our result demonstrated that treatment of BGC823 cells
with Rabeprazole remarkably decreased NLRP3/ASC/
caspase-1/GSDMD expression, the core component of
the inflammasome, and led to maturation and secretion
of IL-1β and IL-18, suggesting that the novel function of
Rabeprazole in gastric inflammation in alleviation of in-
flammatory reaction by the regulation of pyroptosis.
However, the further work is required to elucidate
whether nonclassical caspase-1-mediated pyroptosis in-
volved in Rabeprazole regulated pyroptosis.
Interestingly, NLRP3, but not other inflammasome

components, controls CD11b+ DC differentiation in the
gastric LP and in other GI, lung, and lymphoid tissues in
an inflammasome-independent manner, which is also re-
quired for Treg development and suppression of Th1 re-
sponses upon H. pylori infection [36], while the primary
murine macrophages infected with Helicobacter pylori
upregulated caspase-11 and activated caspase-1 and IL-
1β secretion [37]. In this study, our results further
showed that GSDMD expression, an executor of pyrop-
tosis, is significantly increased in gastric mucosa with H.
pylori infection, which is in line with the result displayed
that GSDMD is drastically decreased in gastric epithelial
cells in response to rabeprazole stimulation, a regimen
for H. pylori-infectious treatment. What’s more, the in-
appropriate activation of the NLRP3 inflammasome
could contribute to the onset and progression of various
diseases [38], such as obesity [39], type 2 diabetes [40],
inflammatory bowel disease [41], rheumatoid arthritis
[42], liver fibrosis [43], Myocardial infarctions [44]. In
addition to both NF-KB and SREBP-1c have been re-
ported to regulate NLRPs transcription [17, 18, 20, 45],
the further work is required to address the mechanism
through which rabeprazole regulated NLRP3, leading to
inhibit NLRP3 inflammasome in future work.

Conclusion
In summary, these findings extended the function of
Rabeprazole and revealed a novel role of rabeprazole in
the patients with H. pylori infectious, suggesting that tar-
geting cell pyroptosis may be a novel improvement of
therapeutic strategy for the patients with H. pylori.
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