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Abstract: Fibroblast growth factor (FGF) signaling is involved in the pathogenesis of multiple
sclerosis (MS). Data from neuropathology studies suggest that FGF signaling contributes to the
failure of remyelination in MS. In MOG35–55-induced EAE, oligodendrocyte-specific deletion of
FGFR1 and FGFR2 resulted in a less severe disease course, reduced inflammation, myelin and
axon degeneration and changed FGF/FGFR and BDNF/TrkB signaling. Since signaling cascades
in oligodendrocytes could not be investigated in the EAE studies, we here aimed to characterize
FGFR-dependent oligodendrocyte-specific signaling in vitro. FGFR inhibition was achieved by
application of the multi-kinase-inhibitor dovitinib and the FGFR1/2/3-inhibitor AZD4547. Both
substances are potent inhibitors of FGF signaling; they are effective in experimental tumor models
and patients with malignancies. Effects of FGFR inhibition in oligodendrocytes were studied by
immunofluorescence microscopy, protein and gene analyses. Application of the tyrosine kinase
inhibitors reduced FGFR1, phosphorylated ERK and Akt expression, and it enhanced BDNF and TrkB
expression. Furthermore, the myelin proteins CNPase and PLP were upregulated by FGFR inhibition.
In summary, inhibition of FGFR signaling in oligodendrocytes can be achieved by application
of tyrosine kinase inhibitors. Decreased phosphorylation of ERK and Akt is associated with an
upregulation of BDNF/TrkB signaling, which may be responsible for the increased production of
myelin proteins. Furthermore, these data suggest that application of FGFR inhibitors may have the
potential to promote remyelination in the CNS.
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1. Introduction

Demyelination of the central nervous system (CNS) causes degeneration of axons [1]
associated with permanent disability [2–4]. The physiological response to demyelination
is robust and leads to effective remyelination [5]. However, remyelination often fails in
inflammatory demyelinating diseases such as MS [2,6,7]. The pivotal impediment for
remyelination in MS is most likely not the recruitment of oligodendrocyte progenitor cells
(OPCs) to lesions, but OPCs‘ inability to differentiate into mature myelin-producing oligo-
dendrocytes (OLs) [8,9]. Growth factors have been associated with the differentiation of
oligodendrocytes in demyelinating pathologies. These include brain derived neurotrophic
factor (BDNF), nerve growth factor (NGF), insulin-like growth factor (IGF), platelet derived
growth factor (PDGF), ciliary neurotrophic factor (CNTF) and FGF [10,11]. Molecular
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analyses of brain tissue suggest that FGF/FGF receptor (FGFR) signaling pathways are
relevant to the pathogenesis of MS. In lesion areas, FGF1 is expressed in oligodendrocytes,
astrocytes, microglia/macrophages and infiltrating lymphocytes [12]. FGF2 is mainly
found in microglia/macrophages [13], whereas FGF9 is expressed in oligodendrocytes and
astrocytes [14]. Further, the corresponding FGFR1 is upregulated in an OPC subpopulation
in lesions [13]. Moreover, in the cerebrospinal fluid (CSF), FGF2 levels were increased in
patients with MS, and their highest expression was found in relapse [15].

MOG35–55-induced experimental autoimmune encephalomyelitis (EAE) is the most
widely used animal model of MS. We recently investigated the role of oligodendrocyte-
specific deletion of FGFR1 and FGFR2 in EAE [16,17]. Cell-specific deletion of these genes
decreased disease severity, reduced lymphocyte and macrophage/microglia infiltration,
and resulted in less myelin and axon degeneration. Furthermore, changes in FGF/FGFR
downstream signaling and the BDNF/TrkB pathway were induced by oligodendrocyte-
specific FGFR deletions. Based on these findings of oligodendrocyte FGFR function on
inflammation and neurodegeneration, we sought to characterize the mechanisms responsi-
ble for demyelination in particular with respect to myelin expression in oligodendroglia.

We hypothesized that in vitro application of FGFR inhibitors results in reduced prolif-
eration, enhanced differentiation and upregulation of myelin associated proteins in OLs.
To test our hypothesis, we used OLN-93 cells and treated them with AZD4547 and dovi-
tinib. AZD4547 is a novel FGFR1-3 inhibitor with high oral bioavailability, selectivity and
potency [18] down-regulating RAS-MAPK-ERK and phosphoinositide 3-kinase (PI3K)-Akt
pathways [19], which was employed in Phase II studies for treatment of different can-
cers. The favorable side effect profile of AZD4547 makes it an auspicious candidate for
inhibition of FGFR1-3 in humans [20,21]. Dovitinib is a multi-kinase inhibitor targeting
FGFR1-3 along with vascular endothelial growth factor (VEGF), platelet-derived growth
factor receptor (PDGFR) and tyrosine kinases of Class III (KIT, RET) [22]. It is a well-known
tyrosine kinase inhibitor that has been trialed in clinical studies for its effect on various
cancers. Other than AZD4547, dovitinib targets a broader spectrum of receptors, and
may therefore, provide insights on the role of complementary growth factor receptors.
Overall, receptor-targeted modulation of FGFR signaling has yielded promising results in
cancer disease models [23,24] and potent inhibitors of FGFRs are currently tested in cancer
treatment trials [25].

Administration of these FGFR tyrosine kinase inhibitors resulted in less FGFR1 ex-
pression and less phosphorylation of Akt and ERK. Interestingly, AZD4547 and dovitinib
both promoted the upregulation of TrkB/BDNF and enhanced expression of myelin pro-
teins. Thus, this study revealed that AZD4547 and dovitinib are efficacious in inducing
differentiation of OLN-93 oligodendrocytes and the promotion of myelination in vitro. The
findings presented here support the view of FGFR inhibition as a therapeutic tool to enable
remyelination in MS.

2. Materials and Methods
2.1. Cell Culture

The permanent oligodendroglia cell line OLN-93 was kindly provided by Prof. Markus
Kipp, University of Rostock, Germany. Cells were cultured in growth medium consisting
of Dulbecco’s Modified Eagle Medium (DMEM) (Gibco, Invitrogen, Carlsbad, CA, USA)
supplemented with 10% heat inactivated FBS (Gibco, Invitrogen, Carlsbad, CA, USA)
and 1% penicillin/streptomycin (Life Technologies Limited, Renfrew, UK). Cells were
maintained at 37 ◦C in an incubator (Sanyo, Osaka, Japan) at a controlled atmosphere (95%
humidity, 5% CO2). At a confluence of at least 80%, cells were sub-cultured. Washing with
PBS (PAN Biotech, Aidenbach, Germany) was followed by cell detachment using 0.5%
Trypsin-EDTA (Gibco, Invitrogen, Carlsbad, CA, USA), centrifugation of detached cells
and resuspension in fresh medium. Experiments were performed at passage 8–20.
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2.2. Experimental Treatment of Cells

Four groups were deployed and treated with either dovitinib (Selleck Chemicals,
Houston, TX, USA), AZD4547 (Selleck Chemicals, Houston, TX, USA), FGF2 (R&D Systems,
Minneapolis, MN, USA) or utilized without treatment as a control. AZD4547 and dovitinib
were dissolved in dimethyl sulfoxide (DMSO) (Carl Roth GmbH, Karlsruhe, Germany) and
stored at −20 ◦C until use. Compounds were applied at a concentration of 1 µM (AZD4547,
dovitinib) or 25 ng/mL (FGF2). DMSO controls have been included in all experiments.
The inhibitors were applied at an effective concentration as previously established [18,26].
All treatments were added to DMEM growth medium and setups were incubated for 24 h,
after which appropriate amounts of cells were taken for further analysis.

2.3. Proliferation Measurement

To assess cell proliferation under different treatment conditions several assays were
utilized. Cells were grown in DMEM culture medium supplemented with 10% FBS and the
respective compounds at humidified conditions. After 24 h of incubation manual counting
was performed using a Neubauer improved chamber (Karl Hecht “Assistant”, Altnau, TG,
Switzerland) and Trypan blue dye (Carl Roth, Karlsruhe, Germany) as described by oth-
ers [27]. For photometric evaluation of proliferation, cells were seeded at 2 × 104 cells/well
in a 96 well plate (Greiner Bio-One, Frickenhausen, Germany) before treatment. After 24 h
of treatment, a WST-1 assay (Roche Applied Science, Mannheim, Germany) was carried
out as described by manufacturer. Absorption was measured by ELISA-Reader (Multiscan
EX, Thermo Fisher Scientific, Langenselbold, Germany) at a wavelength of 405 nm using a
reference wavelength of 492 nm.

2.4. Cytotoxicity Assessment

Possible cytotoxic effects of applied compounds were studied by measuring lactate de-
hydrogenase (LDH) in the supernatant of incubated cells (96 well plate, 0.5× 104 cells/well)
using a prefabricated kit (Cytotoxicity Detection Kit (LDH), Roche Diagnostics, Mannheim,
Germany). Cell plates were centrifuged for 10 min at 250× g and supernatant was used to
measure absorbance at 492 nm (reference wavelength: 620 nm) to calculate cytotoxicity as
described by manufacturer.

2.5. Western Blotting and Antibodies

For protein extraction, cells were incubated in T-75 flasks for 24 h as described above.
Media was then removed, and cells were washed with PBS. After centrifugation, buffer
was removed, cells were lysed and protein concentration was quantified in a nanopho-
tometer (Implen GmbH, Munich, Germany) according to the manufacturer’s instructions.
After normalization, proteins were separated by 10% SDS-PAGE gel electrophoresis. Sepa-
rated protein was transblotted to a nitrocellulose membrane (GE Healthcare, Amersham™
Protran™, Buckinghamshire, UK) and after blocking with 5% BSA (Merck, Darmstadt,
Germany) primary antibodies were applied in an appropriate dilution in tris buffered
saline with tween 20 (TBST) with 5% BSA and incubated overnight. The antibodies used
in this study can be found in Supplementary (Supplementary Table S1). SuperSignal™
West Pico chemiluminescent substrate (Thermo Fisher Scientific, Waltham, MA, USA) was
used to visualize the protein bands imaged in an ECL Chemocam Imager (Intas-Science,
Göttingen, Germany) and quantified using ImageJ software (NIH, Stapleton, NY, USA).

2.6. RNA Analysis

For RNA extraction, cells were incubated in T-75 flasks for 24 h as described above.
Media was then removed, and cells were washed with PBS. After centrifugation, buffer
was removed and the cellular RNA extracted with peqGOLD Total RNA Kit as described
by the manufacturer (VWR, PEQLAB, Darmstadt, Germany). Total amount of RNA was
quantified in a nanophotometer and 1 µg of RNA was used for subsequent cDNA synthesis
with QuantiTect Reverse Transcription Kit (Thermo Fisher Scientific, QIAGEN, Hilden,
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Germany). All samples were diluted in 200 µL RNAse free H2O from which 1 µL was
used for comparative quantitative real time PCR (qRT-PCR) MicroAmp®® Fast Reaction
Tubes (Applied Biosystems, Darmstadt, Germany). A total 7 µL of H2O, 1 µL of forward
and reverse primer (FP and RP, respectively) and 10 µL of SYBR®® Green qPCR Supermix
(Bio-Rad, Hercules, CA, USA) was added. Primers for FGFR1, BDNF, TrkB, PLP, CNPase,
SEMA3A, TGFβ and GAPDH as internal control were purchased from Eurofins Genomics
(Ebersberg, Germany). The primers used in this study can be found in Supplementary
Table S2. PCR was performed in StepOne®® Real-Time PCR system (Applied Biosystems,
Darmstadt, Germany) using StepOne™ Software v2.3 (Applied Biosystems, Darmstadt,
Germany) in 40 repetitive cycles: Denaturation at 95 ◦C for 15 s followed by annealing
at 60 ◦C for 1 min. The three biological replicates performed contained negative controls
without template cDNA and were executed in technical duplicates. Quantification of the
results was carried out using the 2−∆∆Ct method [28].

2.7. Immunofluorescence

To address the morphological alterations induced by FGFR inhibition, immunofluores-
cence was performed. OLN-93 cells were seeded on sterilized coverslips (R. Langenbrinck,
Emmendingen, Germany) in 24-well-plates (GreinerBioOne, Frickenhausen, Germany)
at a final density of 6 × 104 cells/well and treated according to their assigned group as
described in section experimental treatment of cells. Cells were washed with PBS, fixed
using 4% paraformaldehyde and incubated in PBS containing 0.5% Triton X-100 (Sigma-
Aldrich, Steinheim, Germany) for permeabilization. After blocking in PBS with 5% BSA,
cells were incubated overnight at 4 ◦C with primary antibodies, washed and stained with
respective fluorescent secondary antibodies (as listed in Supplementary Table S1). Negative
controls omitting the secondary antibody were included for each treatment. Cells were
counter-stained with DAPI (Carl Roth, Karlsruhe, Germany) and subsequently mounted
onto microscope slides using Fluorescence Mounting Medium (DAKO, Agilent, CA, USA).
Images were taken with Axioplan 2 Fluorescence Microscope (Carl Zeiss, Jena, Germany) at
a magnification of 50× and 400× using ZEN software for microscope (Zen 2.3, ZEISS, Jena,
Germany) for image acquisition and processing. For counting of positive cells, 10 areas on
every slide were randomly selected and a total of 30 cells was counted in each spot at 50×
magnification regarding the intensity and location of signal. The total number of cells was
determined by the DAPI counterstain.

2.8. Statistical Analysis

All experiments were conducted at least in 3–6 replicates. Data were analyzed using
Sigmaplot 14 (Systat, San Jose, CA, USA). Depending on distribution of data, differences
between groups were analyzed either by using ANOVA or Kruskal–Wallis ANOVA fol-
lowed by a Tukey post hoc test or by Dunn’s Method. p < 0.05 was considered statistically
significant (*/# =̂ p < 0.05, **/## =̂ p < 0.005, ***/### =̂ p < 0.001). Values are shown as
mean ± standard error of the mean (SEM).

3. Results
3.1. FGFR Inhibition Reduces Proliferation of OLN-93 Cells

To study whether AZD4547 and dovitinib alter proliferation, OLN-93 cells were
treated with these inhibitors. AZD4547 and dovitinib resulted in less proliferation of
OLN-93 cells compared to untreated cells (dovitinib vs. control: p = 0.002; AZD4547 vs.
control: p = 0.012; dovitinib vs. FGF2: p < 0.001; AZD4547 vs. FGF2: p < 0.012) (Figure 1A).
In contrast, application of FGF2 did not affect proliferation of OLN-93 cells (Figure 1A).
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Figure 1. Cell viability (A,B) and FGFR expression (C–E) of OLN-93 cells incubated with dovitinib, AZD4547 or FGF2 for
24 h. Both FGFR inhibitors induced anti-proliferative responses in OLN-93 cells (A), while only AZD4547 was cytotoxic to
these cells (B). Representative sections of immunofluorescence staining (C). Quantitative analysis of immunofluorescence
staining revealed reduced numbers of FGFR1+ cells after dovitinib and AZD4547 treatment (D). FGF2 did not affect the
number FGFR1+ cells. qRT-PCR showed downregulation of FGFR (FGFR1) mRNA only in cells treated with AZD4547 (E).
Data are presented as mean ± SEM. * p < 0.05, ** p < 0.005, *** p < 0.001 vs. control; ## p < 0.005, ### p < 0.001 vs. FGF2.

3.2. Inhibition of FGFR Is Cytotoxic to OLN-93 Cells

As these compounds inhibit growth factor receptors involved in cell survival, we
investigated possible cytotoxic effects on OLN-93 cells by means of a LDH assay. Both
substances were deployed at a concentration of 1 µM throughout the experiment. LDH
levels in the supernatant of the treated cells revealed a significant cytotoxic effect of
AZD4547 (p < 0.001), while dovitinib did not exert cytotoxicity in comparison to control
(Figure 1B).

3.3. FGFR1 Expression Is Reduced by FGFR Inhibition

In the present study we investigated specific effects of pharmacological FGFR inhibi-
tion in oligodendrocytes by immunostaining and comparative qRT-PCR, after previously
characterizing the effects of genetic FGFR silencing in OLs in the EAE model [16,17]. Ap-
plication of AZD4547 and dovitinib resulted in a significant reduction of FGFR1+ cells
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compared to control (p < 0.001) (Figure 1C,D). FGF2 did not affect FGFR1 expression on
cellular or mRNA levels (Figure 1C–E). While dovitinib treatment decreased the overall
number of FGFR1+ cells, it did not affect FGFR1 mRNA expression. Cells treated with
AZD4547 expressed less FGFR1 mRNA (p = 0.009) (Figure 1E).

3.4. FGFR Inhibition Decreased Phosphorylation of FGFR Downstream Signaling via Akt
and ERK

After studying the proliferative and cytotoxic effects of AZD4547 and dovitinib, we
investigated whether these substances might be involved in FGFR signaling. For this
purpose, we conducted Western blot and immunofluorescence staining for pERK and pAkt
to examine the relative activation of these pathways following FGFR inhibition. The number
of pAkt+ cells was significantly reduced by AZD4547 and dovitinib (p < 0.001) (Figure 2A,B).
We observed a trend towards lower abundance for dovitinib compared to control (p = 0.131)
(Figure 2C,D). Fewer pERK+ cells were detectable by immunofluorescence after treatment
with AZD4547 or dovitinib (p < 0.001) (Figure 3A,B). pERK protein levels were unchanged
(Figure 3C,D).

Figure 2. Cellular distribution (A,B) and protein expression (C,D) of pAkt. Representative sections of immunofluorescence
staining (A). Quantification of fluorescence exposed a reduction in pAkt+ cell count for both inhibitors to less than 60% (B).
Representative Western blot images of pAkt analysis (C). pAkt levels as quantified by Western blot (D). Data are presented
as mean ± SEM. *** p < 0.001 vs. control; # p < 0.05, ### p < 0.001 vs. FGF2.
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Figure 3. Cellular staining (A,B) for pERK and its protein expression (C,D). Representative sections for distribution and
prevalence of pERK (A). The number of pERK+ cells was reduced by more than 40% in all groups treated with FGFR
inhibitors (B). Representative images of pERK Western blot (C). pERK protein levels were reduced by dovitinib (D). Data
are presented as mean ± SEM. *** p < 0.001 vs. control; # p < 0.05, ### p < 0.001 vs. FGF2.

3.5. The Expression of Neuroprotective BDNF and Its Receptor TrkB Is Elevated Following
Inhibition of FGFR Signaling

We next studied the neurotrophin BDNF and its receptor TrkB, which are known
to play an important role in myelination [29,30]. Application of dovitinib resulted in an
increase in the number of BDNF+ cells (p = 0.005) (Figure 4A,B) and TrkB+ cells (p < 0.001)
(Figure 5A,B). Treatment with AZD4547, however, increased only the number of TrkB+

(p = 0.002) (Figure 5A,B) but not BDNF+ cells (Figure 4A,B). Dovitinib caused an upregula-
tion of BDNF and TrkB proteins (p < 0.001) (Figure 4D,E and Figure 5D,E). AZD4547 did
not affect protein levels of TrkB or BDNF (Figure 4D,E and Figure 5D,E). In contrast to these
findings, mRNA encoding for BDNF (p < 0.001) was increased by AZD4547 (Figure 4C).
Furthermore, NTRK2 mRNA expression was elevated after AZD4547 treatment (p < 0.001).
Treatment with dovitinib did not alter mRNA levels of BDNF or NTRK2.
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Figure 4. Cellular distribution (A,B), mRNA expression (C) and total amount of BDNF protein (D,E). Representative images
are shown for immunofluorescence staining (A). Quantification of fluorescence showed a 40% enhancement of BDNF+ cell
numbers by dovitinib (B). BDNF (BDNF) mRNA was abundant after inhibition with AZD4547 (C). Representative Western
blot bands of BDNF protein expression (D). BDNF protein expression was increased by dovitinib (E). Data are presented as
mean ± SEM. * p < 0.05, *** p < 0.001 vs. control; # p < 0.05, ### p < 0.001 vs. FGF2.

3.6. Expression of PLP and CNPase in OLN-93 Cells Is Increased by FGFR Inhibition

To assess whether pharmacological inhibition of FGFR induces myelination, we in-
vestigated the expression of key myelin protein components [31]. Indeed, immunofluo-
rescence staining showed a significant increase in PLP+ and 2′, 3′-Cyclic-nucleotide 3′-
phosphodiesterase (CNPase)+ cells to both compounds (p < 0.001) (Figures 6A,B and 7A,B)
Further, Western blot analysis of dovitinib treated OLN-93 cells showed abundance for
PLP compared to FGF2 (p = 0.026). In contrast, AZD4547 treated OLN-93 cells did not
show changes in PLP protein levels (Figure 6D,E). PLP1 mRNA was elevated by both in-
hibitors (AZD4547: p = 0.006; dovitinib: p = 0.005) compared to control and FGF2 (p < 0.001)
(Figure 6C). In addition, CNPase protein levels were also increased by both inhibitors
versus FGF2 (AZD4547: p = 0.03; dovitinib: p = 0.018) (Figure 7D,E). Similarly, comparative
qRT-PCR showed increased mRNA levels of CNP for AZD4547 and dovitinib (AZD4547:
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p < 0.001; dovitinib: p = 0.002), and FGF2 (p < 0.001). Conversely, FGF2 treatment of
oligodendrocytes significantly reduced mRNA levels of both PLP (p = 0.043) and CNP
(p < 0.001) (Figures 6C and 7C).

Figure 5. Number of TrkB+ cells (A,B), TrkB mRNA (C) and protein levels (D,E). Representative sections of immunofluo-
rescence staining (A). Analysis of immunofluorescence staining revealed increased numbers of TrkB+ cells by dovitinib
and AZD4547 of more than 20% (B). qRT-PCR showed an upregulation of TrkB (NTRK2) mRNA only in cells treated with
AZD4547 (C). Representative Western blot images for TrkB (D). TrkB protein levels were increased by dovitinib (E). Data are
presented as mean ± SEM. ** p < 0.005, *** p < 0.001 vs. control; ## p < 0.005, ### p < 0.001 vs. FGF2.
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Figure 6. Distribution of PLP+ cells (A,B), PLP mRNA expression (C) and its amount of total protein (D,E). Representative
images for immunofluorescence staining (A). Quantification of fluorescence revealed doubled PLP+ cell numbers after
treatment with the FGFR inhibitors (B). mRNA expression of PLP (PLP1) was increased by treatment (C). Representative
Western blot images of PLP analysis (D). PLP protein was increased by dovitinib (E). Data are presented as mean ± SEM.
* p < 0.05, *** p < 0.001 vs. control; # p < 0.05, ### p < 0.001 vs. FGF2.
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Figure 7. Immunofluorescence staining for CNPase+ cells (A,B), CNPase mRNA (C) and protein levels (D). Depicted
representative sections showed increase in distribution and prevalence of CNPase (A). The number of CNPase+ cells
was increased by more than 60% by AZD4547 or dovitinib treatment (B). mRNA analysis revealed decreased expression
of CNPase (CNP) mRNA by FGF2; FGFR inhibitors enhanced mRNA levels (C). Representative Western blot bands for
CNPase (D). Quantification of CNPase protein revealed increased expression by the inhibitors (E). Data are presented as
mean ± SEM. ** p < 0.005, *** p < 0.001 vs. control; ## p < 0.005, ### p < 0.001 vs. FGF2.

3.7. Expression of the Myelin Inhibitory Genes SEMA3A and TGFß Is Reduced after FGFR
Inhibition by AZD4547

Semaphorin 3A (SEMA3A) is one of the factors known to suppress (re)myelination by
impeding OPC migration [32]. Transforming growth factor β (TGFβ) has ambivalent roles
in demyelination. We, therefore, assessed their expression after FGFR inhibition on mRNA
levels using comparative qRT-PCR. The analysis revealed an abating effect of AZD4547 on
mRNA levels of TGFB1 (vs. control: p < 0.024) as well as SEMA3A (vs. FGF2: p = 0.007; vs.
control: p < 0.001) (Figure 8A,B). Dovitinib did not regulate TGFB1 gene expression, there
was a strong trend towards downregulation of SEMA3A (Dovitinib vs. control: p = 0.062)
(Figure 8A,B).
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Figure 8. mRNA levels of TGFβ1 and SEMA3A. Expression of TGFβ (A) and SEMA3A (B) mRNA was reduced by AZD4547.
While dovitinib and FGF2 did not regulate TGFβ (TGFB1) mRNA (A), AZD4547 reduced TGFβ mRNA expression (A) as
well as mRNA levels of SEMA3A (SEMA3A) (B). Data are presented as mean ± SEM. * p < 0.05, *** p < 0.001 vs. control;
## p < 0.005 vs. FGF2.

4. Discussion

There is increasing evidence for a role of FGF/FGFR signaling in the pathogenesis
of MS and its disease model EAE. We recently showed that OL-specific deletion of either
FGFR1 or FGFR2 resulted in a less severe disease course in MOG35–55-induced EAE [16,17].
Furthermore, detrimental effects of FGFR signaling in OLs on inflammation, myelin and
axons were found in this disease model, highlighting the importance for the investigation
of FGFR signaling in these myelin-producing cells. Therefore, to extend our understanding
of FGFR signaling in oligodendrocytes, we studied the effects of pharmacological inhibition
of FGFR in OLN-93 cells using the tyrosine kinase inhibitors dovitinib and AZD4547. We
propose that the characterization of effects caused by FGFR inhibition in OLs can be a step
towards the development of therapeutics abrogating impaired remyelination in MS.

To date, research on the function of FGFRs in oligodendrocytes has been done in
knockout mice. The studies revealed that activation of ERK and Akt is central to the
function of OPCs and OLs. These signaling proteins take part in pathways involved
in proliferation and differentiation programs including process outgrowth and myelina-
tion [33–37]. Thus, ERK and Akt are considered to be important cellular actors in the OL
cell cycle [38,39] and presumably the most important signaling molecules downstream
of FGFRs [40]. Furthermore, FGFR inhibitors applied to FGFR+ cancer cells reduce the
downstream signal transducers pERK and pAkt [19,41–43]. However, inhibition of the
FGFR pathway specifically in OLs has not been explicitly studied yet. In the present in vitro
experiments, both inhibitors of FGFRs reduced the proliferation of OLN-93 cells. Accord-
ingly, FGFR inhibitors exert anti-proliferative effects in tumor cells [44,45] and vice versa,
FGFs increase proliferation in various cells including OPCs [46–49]. This anti-proliferative
effect of FGFR inhibition in OLN-93 cells was accompanied by a significant reduction of
pErk and pAkt expression. There is considerable evidence that ERK and Akt are promoters
of myelination [33–35,39]. Crosstalk between these two through mTOR signaling [34,36],
as well as activation and inhibition of other pathways are probably involved in myelination
and differentiation of OLs. In EAE, OL-specific deletion of FGFR1 and FGFR2 resulted in an
upregulation of pAkt in the chronic phase of EAE. Since ERK/Akt levels were not changed
in the acute phase of EAE, at a time point when beneficial effects of FGFR deletion were
already present, activation of other pathways may account for the effects on myelin [16,17].
In this in vitro study, inhibition of FGFRs in OLs resulted in reduced phosphorylation of
both direct downstream targets ERK and Akt. Despite the reduction of key signal proteins,
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an increase in myelin expression was observed, suggesting that in OLN-93 cells alternative
supplementary or separate promyelinating pathways exist.

An alternative pathway modulating myelination may involve BDNF/TrkB signaling.
In EAE, deletion of FGFR1 in OL resulted in an upregulation of BDNF/TrkB and less
myelin loss [16]. BDNF increases inflammation in the CNS, while acting as a protective
factor for axons in EAE [50]. Its deletion accordingly leads to more severe clinical activity,
reduced axonal density and increased demyelination in the acute phase of EAE [51]. Thus,
a neuroprotective effect of BDNF/TrkB signaling in an immune-dependent demyelinated
setting, such as in EAE, supports the concept of neuroprotective autoimmunity [52]. Fur-
thermore, administration of a TrkB agonist resulted in neuroprotective effects in EAE,
including decreased OL loss and inflammation, less demyelination and increased remyeli-
nation [53]. A promyelinating effect of BDNF/TrkB signaling also seemed to be present in
an oligodendrocyte monoculture setting without immune cells. Findings from our in vitro
experiments show that FGFR inhibition in OLN-93 cells inhibits canonical downstream
signal transducers, while simultaneously activating the BDNF/TrkB pathway, that was
previously considered to be independent. Taken together, reduced ERK/Akt expression
associated with increased BDNF/TrkB levels suggest that OLs are capable of compensatory
responses following FGFR inhibition.

In agreement with our hypothesis, inhibition of FGFR resulted in increased expression
of myelin-specific proteins. Promotion of cell cycle switches in mature OLs with poten-
tial for myelination may take place. Even though FGFs are required for developmental
myelination and may enhance proliferation of OPCs [49,54], their effects vary dependent
on the microenvironment, presence of other cells, and the differentiation state of OLs.
Concordantly with our results from cell-specific FGFR knockout studies in EAE [16,17],
in vitro data support the view that inhibition of FGFR signaling in OLs results in enhanced
myelination. Furthermore, the inhibitor of remyelination SEMA3A was reduced in OL-
specific FGFR1 and FGFR2 knockout mice in EAE [16,17]. SEMA3A has not only been
suggested to inhibit remyelination, it may also modulate immune responses by balancing
T cell inflammation [32]. TGFβ, which has several cell-specific immunomodulatory roles,
exerts anti-inflammatory effects on the microglia in the CNS [55,56]. Taken together, FGFR
inhibition in OLN-93 cells does not only result in an increase of myelin proteins, it also
decreases the expression of myelin inhibitors. Thus, inhibition of FGFR signaling in OLs
induces myelination and intrinsically decreases inhibition of myelination.

The effects of the two inhibitors used in this study are similar but with different
mechanisms. AZD4547 altered cell responses on the genetic level. It distinctly lowered the
amount of FGFR1 mRNA, increased BDNF and TrkB mRNA and, more subtly, the CNP
mRNA level in comparison to dovitinib. AZD4547 reduced myelin inhibitors TGFβ and
SEMA3A. Surprisingly, alteration of expression patterns did not always result in higher
protein expression. Here, dovitinib treatment resulted in distinct effects on downstream
signaling (pERK, pAkt) compensatory pro-myelinating signals (BDNF, TrkB) and a slightly
higher effect on myelin proteins. However, none of the differences between the two
substances were statistically significant—except for a difference in mRNA levels of TrkB.
The trend towards stronger action by dovitinib may point towards the relevance of other
tyrosine kinases inhibited by dovitinib. These include VEGFRs, c-kit, colony stimulating
factor 1 receptor (CSF1R), FMS-like tyrosine kinase 3 (FLT3) and PDGFRs [57]. CSFR1
is also inhibited by AZD4547 at a similar IC50 and will thus not explain the differences.
All of the above-mentioned receptors are presumably expressed by oligodendrocytes at
least either after injury or in progenitor states [58–62]. It is conceivable, that the effects of
dovitinib are enhanced by its lower selectivity. Especially PDGFRs in mature OLs may
be important for the enhanced response in the presence of dovitinib, as this receptor acts
analogously to FGFRs [63,64].

The in vitro results from this study may be difficult to transfer to the CNS, where
various cell types interact. However, EAE studies demonstrate that FGF/FGFR signaling
affects myelination. Furthermore, most of the data from MS and demyelinating models
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show that FGFs accumulate in demyelinated lesions [13,14,65,66]. In EAE, effects of FGFR
signaling are different between disease phases, but FGFR signaling is detrimental in the
pathogenesis of EAE [16,17]. FGF2 and FGF9 were downregulated in the chronic phase
of EAE in OL-specific FGFR2 knockout mice [17]. MS research has focused on ligands
rather than receptors. FGF2 levels in the CSF are elevated in patients [15] and FGF2+

microglia are present in active MS lesions [13]. FGF9 is increased primarily in OLs in
active as well as in the boundary zone of chronic active lesions suggesting that it blocks
myelination [14]. In contrast, it has been proposed that FGFs act as recruiting factors for
OPCs thus promoting remyelination. Taken together, FGFs may initially be conducive to
recruitment and proliferation, but their continued presence may inhibit remyelination.

Both AZD4547 and dovitinib led to a significant decrease of FGFR1+ cells upon
inhibition of the receptor. Other than expected, OLN-93 cells showed no response to FGFR1
inhibition as explained by a proposed negative feedback loop that upregulates FGFR1
expression. Further, FGFR1 could be either post-transcriptionally degraded (dovitinib) or
its mRNA expression decreased (AZD4547), suggesting a double negative feedback loop. In
fact, this scenario has been described earlier, in which FGFR1 mRNA levels in OPCs decline
after exposure to FGF2 [67]. However, our results showed a reverse effect to the absence
of FGFR1-dependent signaling. This may underline the relevance of high abundance of
FGF2 in a disease state such as EAE and MS, where FGF2 will continuously activate the
signaling pathway which is otherwise down-regulated by auto-negative feedback. In this
scenario, continuously increased levels of FGF2 from various sources activate the cellular
pathway that is otherwise heavily confined by self-regulatory mechanisms, thus leading to
detrimental effects for remyelination.

In summary, we showed that pharmacological inhibition of FGFRs successfully dis-
rupted the FGFR signaling cascade with alterations in intrinsic cellular responses and
myelin production. It is conceivable that decreased phosphorylation of ERK and Akt
induces an upregulation of BDNF/TrkB signaling leading to enhanced production of
myelin-specific proteins. Considering that inhibition of FGFRs is currently being used in
various cancer trials, these tyrosine kinase inhibitors should be administrated in preclini-
cal studies to evaluate their potential for remyelination and, if successful, applied in MS
research trials.
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Abbreviations

BDNF Brain derived neurotrophic factor
CNPase 2′, 3′-cyclic-nucleotide 3′-phosphodiesterase
CNS Central nervous system
CNTF Ciliary neurotrophic factor
CSF Cerebrospinal fluid
DMEM Dulbecco’s Modified Eagle Medium
DMSO Dimethyl sulfoxide
EAE Experimental autoimmune encephalomyelitis
(p)ERK (Phosphorylated) extracellular signal-regulated kinase
FGF Fibroblast growth factor
FGFR Fibroblast growth factor receptor
IGF Insulin-like growth factor
LDH Lactate dehydrogenase
MS Multiple sclerosis
OL Oligodendrocyte
OPC Oligodendrocyte progenitor cell
PI3K Phosphoinositide 3-kinase
PLP Proteolipid protein
PDGF Platelet derived growth factor
PDGFR Platelet-derived growth factor receptor
SEM Standard error of the mean
SEMA3A Semaphorin 3A
TGFβ Transforming growth factor β
TrkB Tropomyosin receptor kinase B
VEGF Vascular endothelial growth factor
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