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from Jinqi Jiangtang preparation against type 2 
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Abstract 

Background: Jinqi Jiangtang (JQJT) has been widely used in clinical practice to prevent and treat type 2 diabetes. 
However, little research has been done to identify and classify its quality markers (Q-markers) associated with anti-dia-
betes bioactivity. In this study, a strategy combining mass spectrometry-based untargeted metabolomics with back-
propagation artificial neural network (BP-ANN)-based machine learning approach was proposed to screen Q-markers 
from JQJT preparation.

Methods: This strategy mainly involved chemical profiling of herbal medicines, statistic processing of metabolomic 
datasets, detection of different anti-diabetes activities and establishment of BP-ANN model. The chemical features of 
seventy-eight batches of JQJT extracts were first profiled by using the untargeted UPLC-LTQ-Orbitrap metabolomic 
approach. The chemical features obtained which were associated with different anti-diabetes activities based on three 
modes of action were normalized, ranked, and then pre-selected by using ReliefF feature selection. BP-ANN model 
was then established and optimized to screen Q-markers based on mean impact value (MIV).

Results: Optimized BP-ANN architecture was established with high accuracy of R > 0.9983 and relative low error of 
MSE < 0.0014, which showed better performance than that of partial least square (PLS) model  (R2 < 0.5). Meanwhile, 
the BP-ANN model was subsequently applied to further screen potential bioactive components from the pre-selected 
chemical features by calculating their MIVs. With this machine learning model, 10 potential Q-markers with bioactivity 
were discovered from JQJT. The tested anti-diabetes bioactivities of 78 batches of JQJT could be accurately predicted.

Conclusions: This proposed artificial intelligence approach is desirable for quick and easy identification of Q-markers 
with bioactivity from JQJT preparation.

Keywords: Jinqi Jiangtang, Backpropagation artificial neural network, Machine learning, Q-markers, Mass 
spectrometry, Metabolomics
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Background
Pharmacologically active natural products, mainly 
derived from herbal medicines and dietary supplements, 
have been an abundant and continued resource for dis-
covery of new drug leads [1]. However, there still remains 
much concerns about the quality control, underlying 
action mechanisms, side effects and potential drug-herb 
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interactions of the complex phytochemicals of herbal 
medicines [2–4]. Therefore, the identification of chemical 
markers for quality control, particularly those contribut-
ing most to their therapeutic efficacy, is the key to under-
stand the scientific basis for the therapeutic application 
of herbal medicines [5].

Many efforts have been devoted to the development 
of strategy for the quality control of herbal medicines 
[6–8]. The concept of quality marker (Q-marker), which 
refers to chemical markers reflecting therapeutic effects 
of herbal medicines, has gained great attention recently 
as an effective solution to quality control [6]. A LC–MS-
based metabolomics method, namely chinmedomics, 
has been employed to uncover Q-markers from various 
herbal medicines [7]. An integrated strategy has been 
established to identify Q-markers from Schisandra chin-
ensis (Turcz.) Baill based on target metabolomics using 
HPLC–MS/MS method [9]. However, due to the high 
complexity of the MS datasets obtained, researchers 
commonly focus on the analysis of a restricted number 
of identified compounds to screen Q-markers of inter-
est. Therefore, various machine learning approaches with 
their powerful data processing and prediction capability 
have been adopted to screen the bioactive compounds 
and predict the different signatures of food and herbal 
samples [10–12]. Among them, artificial neural network 
(ANN) models outperform the others in the modeling of 
complex and non-linear relationships [13–15]. The well-
trained ANN models have been employed to identify 
complex patterns from datasets, make real-time predic-
tions and offer adaptive solutions in multiple fields, such 
as natural products, nanotechnology, and bioresource 
technology [14, 15].

Jinqi Jiangtang (JQJT), one of the anti-diabetic pat-
ent herbal formulas, is optimized from classic "Qian-
jin Huanglian pill". It consists of three herbal medicines 
Coptidis Rhizoma, Astragali Radix, and Lonicerae Japon-
icae Flos, which has been widely used in clinical practice 
to prevent and treat type 2 diabetes in China for decades 
[16]. Chemical profiles of JQJT result in discovery of sev-
eral kinds of compounds, including alkaloids, flavonoids, 
phenolic acids and triterpene saponins etc. Many efforts 
have been made to identify the bioactive compounds 
and clarify the anti-diabetes mechanism, so as to estab-
lish a comprehensive understanding of its therapeutic 
effects [17–19]. However, limited information about its 
Q-markers associated with anti-diabetes bioactivity has 
been gathered from these research thus far. With con-
sideration of this situation, we proposed a data-driven 
approach combining mass spectrometry-based untar-
geted metabolomics with backpropagation artificial neu-
ral network (BP-ANN)-based machine learning approach 
to screening Q-markers from JQJT. The schematic flow 

of this novel strategy is illustrated in Fig. 1. The proposed 
data-driven approach is expected to be proven rapid and 
accurate in the discovery of potential Q-markers from 
herbal medicines at one time.

Methods
Reagents and materials
Acetonitrile (HPLC grade) and ethanol (HPLC grade) 
were purchased from Merck (Darmstadt, Germany). 
2-NBDG probe was purchased from Selleck Chemi-
cals (Houston, USA). Formic acid (MS grade) was 
from Sigma-Aldrich (St. Louis, MO, USA). The ref-
erence compounds of coptisine (≥ 98.0%), berber-
ine (≥ 98.0%), berberubine (≥ 98.0%), epiberberine 
(≥ 98.0%), chlorogenic acid (≥ 98.0%), palmatine 
(≥ 98.0%), jatrorrhizine (≥ 98.0%), demethyleneberber-
ine (≥ 98.0%), 5-O-caffeoylquinic acid (≥ 98.0%), and 3, 
5-O-dicaffeoylquinic acid (≥ 98.0%) were obtained from 
Chengmust Biological Technology Co., Ltd. (Sichuan, 
China). Ultra-pure water was produced by a Milli-Q 
water purification system (Milford, MA, USA).

Preparation of sample solutions
Different batches of three herbal samples were col-
lected from Bozhou and Chengdu Hehuachi medicinal 
herbs market in China, including 6 batches of Coptidis 
Rhizoma (Voucher specimen number: 1706121001–
1706121006), 5 batches of Astragali Radix (Voucher 
specimen number: 1706122001–1706122005), and 6 
batches of Lonicerae Japonicae Flos (Voucher specimen 
number: 1706123001–1706123006). All the samples were 
authenticated by Prof. Peng Li and deposited at State Key 
Laboratory of Quality Research in Chinese Medicine, 
University of Macau (Macau, China). The samples were 
homogenized and sieved through a No. 40 mesh. Total of 
26 JQJT samples were prepared by combining the pow-
ders of three herbal medicines at a ratio of 10.3:15.4:61.8 
(Coptidis Rhizoma: Astragali Radix: Lonicerae Japonicae 
Flos). The JQJT samples (2050  mg) were extracted by 
ultra-sounded for 60 min with 10%, 50% or 90% ethanol 
(20  mL), respectively. After freeze-drying, the obtained 
dry extract was suspended in 10  mL water (equal to 
205  mg /mL). Then, 78 batches of JQJT samples were 
produced. The extracts were centrifuged, and the super-
natant was filtrated through a 0.22  µm filter (Millipore, 
USA). An aliquot of 10 μL resulted filtrate was subject to 
UPLC-LTQ-Orbitrap analysis.

Untargeted metabolomic profiling
The chromatographic separation was performed on a 
C18 column (4.6 mm × 250 mm, 5 µm, Shiseido Co., Ltd., 
Tokyo, Japan) using Dionex UltiMate 3000 UPLC system 
(Thermo Scientific, SanJose, CA, USA). The column was 
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maintained at 27  °C and eluted with mobile phase con-
sisting of 0.1% formic acid water (A) and 0.1% formic acid 
acetonitrile (B) under the following gradient program: 
8%-12% B (0–5  min), 12–18% B (5–10  min), 18–22% B 
(10–15  min), 22–25% B (15–20  min), 25–32% B (20–
35 min), 32–65% B (35–50 min), 65–95% B (50–60 min) 
at a flow rate of 1.0  mL/min. The column was equili-
brated for an additional 5 min at 8% B (1.0 mL/min) after 
a gradient run. And 25% of column effluent was intro-
duced into the ESI source via a post-column flow splitter 
(Analytical Scientific Instruments, CA, USA).

Mass spectrometry was performed on an LTQ-Orbit-
rap system (Thermo Fisher Scientific, Bremen, Germany) 
equipped with a heated electrospray ionization (ESI) 
source operating in the positive ionization mode. The 
key operating parameters of MS were as follows: spray 
voltage of 3.2 kV, sheath gas of 20 (arbitrary units); capil-
lary temperature of 350 °C; auxiliary gas of 10 (arbitrary 
units), sweep gas of 2 (arbitrary units), and capillary volt-
age of 25 V. Full scan mass spectra were acquired in the 
mass range of m/z 100 to 1500 with a resolving power 
of 30,000. Data-dependent MS/MS fragmentation was 
performed to acquire  MS2 spectra in linear ion trap. 
Dynamic exclusion was used to avoid repeated MS/MS 
analysis with the exclusion time of 30  s. The collision-
induced dissociation (CID) was used with normalized 

collision energy of 35%. The data acquiring and process-
ing was performed using Thermo Xcalibur 2.1 (Thermo 
Fisher Scientific) workstation.

Metabolomics data processing
Raw data (.raw format) acquired with Xcalibur work-
station were converted to the mzXML data using the 
MSConvert software. XCMS online, an open-source 
deconvolution software, was employed to pretreat the 
obtained mzXML [20]. After peak extracting, filtering 
and alignment, the dataset containing the integrated peak 
intensity, m/z, and retention time was obtained. Metabo-
Analyst 3.0 online algorithm, a web-based tool designed 
for data normalization (normalized by median), visuali-
zation and interpretation, was applied for further multi-
variate analysis of the peak table by using the statistical 
analysis module with default parameters [21].

PCA was then performed on these normalized data by 
using the statistical analysis module in Metaboanalyst as 
to discriminate the metabolomic differences among dif-
ferent herbal medicines and JQJT samples, respectively 
[22]. The normalized data were subsequently imported 
into the SIMCA-P 13.0 platform (Umetrics AB, Umeå, 
Sweden) for the partial least square (PLS) analysis to 
screen the chemical features with anti-diabetic activity. 

Fig. 1 The proposed strategy for the discovery of bioactive compounds from Jinqi Jiangtang (JQJT) through mass spectrometry and 
backpropagation artificial neural network (BP-ANN)-based machine learning approach
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 R2 value, namely the determination coefficient, was used 
to estimate the predictive ability of the established model.

Bioactivity assay
Type 2 diabetes is a long-term metabolic disorder associ-
ated with elevated blood glucose levels, insulin resistance, 
and relative lack of insulin [23]. Glucose consumption, 
α-glucosidase inhibitory and uptake of 2-NBDG assays 
are widely used to screen anti-diabetes compounds from 
natural products [24]. In order to classify the types of the 
bioactivities of the effective components, the three in-
vitro anti-diabetes models were employed.

Glucose consumption
Glucose consumption was determined by using a murine 
hepatocyte AML12 cell line purchased from American 
Type Culture Collection (ATCC, Rockville, MD, USA). 
AML12 cells were cultured in 96-well plates with  104 
cells/well and starved in 100 μL DMEM/F12 (17.5  mM 
glucose) for 6  h, then treated with 1 μL of 205  mg/mL 
JQJT solutions or 100  mM metformin. After 16  h, glu-
cose concentrations in the culture supernatant were 
determined with glucose assay kit (Nanjing Jiancheng 
Bioengineering Institute, Nanjing, China) and glucose 
consumption were calculated as described previously 
[25].

α‑Glucosidase inhibition
The inhibition effect of JQJT preparation against 
α-glucosidase enzyme was measured according to previ-
ous study [26]. α-Glucosidase and substrate (4-nitrophe-
nyl α-d-glucopyranoside, p-NBDG) were purchased from 
Sigma-Aldrich. Briefly, α-glucosidase and p-NBDG were 
dissolved in potassium phosphate buffer (67  mM, pH 
6.8). Reaction mixture containing 10 μL of sample solu-
tions (1.3  mg/mL), 40 μL of α-glucosidase (0.25 U/mL) 
solution was pre-incubated at 37 °C for 15 min. Then, 135 
μL of 4  mM p-NBDG was added into the mixture and 
incubated for 30  min at 37  °C. The enzymatic reaction 
was terminated by the addition of 75 μL of sodium car-
bonate solution (0.2 mol/L). The α-glucosidase inhibition 
activity of tested samples was evaluated by measuring 
the absorbance (Abs) at 405 nm. Acarbose (2000 µg/mL) 
was used as the positive control. The inhibitory potency 
against α-glucosidase was calculated as follows: Inhibi-
tion% = [(Abs control − Abs sample) / Abs control].

Glucose uptake assay
Cellular glucose uptake was determined using the fluo-
rescent probe 2‐NBDG according to previous method 
[27]. Palmitate was dissolved in ethanol and mixed with 
fatty acid-free bovine serum albumin (BSA) stirred at 
50 °C for 2 h [28]. L6 myotubes (ATCC) were seeded into 

96-well cell culture plates  (104 cells/well in 100 μL cul-
ture medium) and pre-treated with 1 μL of 205  mg/mL 
test samples or metformin (100 mM) for 2 h, followed by 
incubation with 0.1 μL of 0.5 M palmitic acid-BSA con-
jugate solution for 16 h. Cells were starved with culture 
medium for 2 h, and then incubated with or without 100 
μL of 100 μM 2-NBDG for 30 min. The intensity of fluo-
rescence was measured after incubation with 0.1 μL of 
100 μM insulin for 10 min.

Chemometric analysis
Chemical features ranking and pre‑selecting using ReliefF
The peak matrix extracted from the raw data was first 
processed with the ReliefF-based feature selection algo-
rithm [29]. The weights of features were calculated and 
ranked using ReliefF algorithm. The top 18 ranked chem-
ical features, which fit better with the bioactivities, were 
selected for subsequent BP-ANN modelling. ReliefF 
algorithm was performed within the MATLAB (R2016a, 
Mathworks, Natick, USA).

BP‑ANN model
BP algorithm minimizes the error in predictions and 
produces satisfactory results by adjusting each weight of 
the networks, which was utilized in the establishment of 
ANN model [30]. In the current study, the inputs for the 
BP-ANN were the pre-selected peaks intensities, while 
the three bioactivities were set as output. As showed in 
Additional file  1: Fig. S1, BP-ANN consisted of 18 neu-
rons as the input layer, 7 neurons as the hidden layer and 
3 neurons as the output layer. In modeling, 70% of the 
total samples were used and treated as the training data 
set for building the model. To prevent overfitting, 15% of 
the samples were used as the validation data set for early 
stopping methodology. The 15% remained were used as 
the test data for testing the model and cross-validation. 
Based on the preliminary experiment, the dividerand 
function was chosen to randomly divide the sample data 
in this work. The mean square error (MSE) was employed 
to estimate the performance of BP-ANN model during 
the training process. ANN tool of MATLAB was used to 
build the BP-ANN model.

Structural elucidation of selected compounds
The Xcalibur 2.1 was used to process the raw MS data. 
The compounds responsible for the bioactivity were 
screened and further identified. Mass Frontier 7.0 
(Thermo Fisher Scientific, San Jose, CA, USA) was 
employed for the structural identification and the pro-
posed of fragmentation patterns. The results were con-
firmed by relevant literature data or comparing their 
retention times with reference standards.
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Results
Untargeted metabolomic profiling of different JQJT 
combinations
Different batches of the three herbal medicines col-
lected from diverse origins were profiled respectively 
by using the developed UPLC-LTQ-Orbitrap method. 
The typical total ion chromatograms of the three herbal 
medicines were depicted in Additional file  1: Fig. S2, 
and the differences of peak intensity were significant for 
discriminating them. As illustrated in PCA score plot 
(Fig.  2a–c), almost all herbal medicines were grouped 
into different clusters. Untargeted metabolomics were 
then carried out to profile the chemical composition of 
the total 78 different JQJT extracts, respectively. After 
deconvolution, a total of 1010 peaks were obtained. 
Considering that a large amount of missing values may 

result in low power for downstream analysis, we per-
formed missing value estimation, data filtering and nor-
malization via MetaboAnalyst using default parameters 
prior to the multivariate statistical analysis, with 710 
ions retained for the following statistical analysis [31]. 
To uncover the similarities among samples and detect 
the outliers, further exploration of the processed data 
was made by using PCA. On the score plot of PCA 
(Fig. 2d), different JQJT were not clearly classified into 
three separated regions, implying the redundancy of 
710 features.

Bioactivities of different JQJT combinations
Different signaling pathways associated with the anti-
diabetes effect of JQJT have also been reported [17], 
such as the inhibitory activity against α-glucosidase, 
α-amylase, preventing insulin resistance, and 

Fig. 2 The PCA score plots of different samples. a Coptidis Rhizoma (Cop); b Astragali Radix (Astra); c Lonicerae Japonicae Flos (Lon); d Different 
batches of JQJT samples extracted with 10% (red), 50% (green), and 90% (blue) ethanol
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promoting glucose uptake etc. Herein, three different 
anti-diabetes models, promotion of glucose consump-
tion, inhibition of α-glucosidase, and enhancement of 
glucose uptake, were used to examine the bioactivities 
of JQJT samples. As shown in Fig.  3a–c, the values of 
three bioactivities ranged from 4.53 to 6.93 mM, 20% to 
51%, and 1.47 to 3.43, respectively. Most tested samples 
showed average values, as is evident in the figure. In 
addition, no significant linear correlation with  R2 ≤ 0.12 
among the three assays were observed (Fig.  3d–f ). 
These results indicated that the tested anti-diabetes 
activities were suitable to screen bioactive compounds 
associated with different anti-diabetes activities.

Discovery of Q‑markers based on machine learning 
techniques
Chemical features ranking and pre‑selecting using ReliefF
We subsequently focused on the chemometric analy-
sis for discovery of potential bioactive compounds. On 
one hand, processing of all the pre-processed data with 
high dimensionality would generate a rather complex 
statistical model with relatively low accuracy. Therefore, 
when all the processed datasets were firstly submitted 
to Simica-P for PLS analysis, the results only exhibited 
poor explanatory power for anti-diabetes activities, in 
which the established PLS model with  R2 ≤ 0.2 and coef-
ficient ≤ 0.004 (Additional file  1: Fig. S3). On the other 
hand, the introduction of extra parameters probably leads 

Fig. 3 Anti-diabetes capacities of 78 batches of JQJT samples and their correlation. a Promotion of glucose consumption; b Inhibition of 
α-glucosidase; c Promotion of 2-NBDG uptake; d Correlation between a and b; e Correlation between a and c; f Correlation between b and c 
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to overfitting of chemometric model. Thus, in the end, a 
ReliefF algorithm-based feature selection technique was 
employed to select a subset of representative chemical 
features in this work. The feature importance ranked by 
ReliefF algorithm was displayed in Fig. 4a–c, respectively. 
The chemical features with a higher weight value were 
closely correlated with the bioactivity. To identify poten-
tial bioactive compounds rapidly, we collected the struc-
tural information of metabolites in JQJT from databases 
like PubChem, METLIN and MassBank, etc. The top 18 
identified chemical features with high weights (Fig.  4d) 
were pre-selected to build a BP-ANN model in this case.

Establishment of BP‑ANN model
A total of 14 training algorithms were tested (Additional 
file  1: Table  S1), the results revealed that the Bayesian 
regularization training algorithm worked as an efficient 
method to accurately simulate and predict the three dif-
ferent bioactivities. The hidden layer was assigned with 
increasing number of neurons, and then the neuron 
numbers were determined by comparing the resulted 
MSE. The neuron numbers in the hidden layer were 
analyzed between 1 and 10. As the results in Additional 
file 1: Table S2 show, the number of hidden layers was 1, 
and neuron numbers in the hidden layer were 7. Three 

transfer functions including purelin, logsig, and tansig 
were selected for the comparison of the performance of 
this model. The final applied training function was the 
tansig (Additional file 1: Table S2). And following the key 
selection of training algorithm, initial bias, initial weights, 
and mu decrease factor were further optimized by using 
response surface methodology (RSM) to construct a pre-
cise model (Additional file 1: Table S3).

Performance of the BP‑ANN model
The final achieved BP-ANN model showed desirable 
performance in predicting and simulating bioactivities. 
The satisfactory performance demonstrated with the 
correlation plots was observed as shown in Fig.  5a–c, 
where R of the training, validation, and test data set 
reached 0.9994, 0.9969 and 0.9959, respectively. In 
addition, the training process of BP-ANN and the 
checking of network performance were evaluated by 
the value of MSE (Fig. 5d), the magnitude of the gradi-
ent and the number of validation checks (Fig. 5e). The 
value of R in this model was 0.9983, which suggested 
that the overall experiment values corresponded well 
with the predicted data. To further confirm the bet-
ter performance of established BP-ANN model in 
predicting anti-diabetes activities and cross validate 

Fig. 4 The weight scores of all chemical features calculated by ReliefF. a Glucose consumption; b α-Glucosidase inhibition; c Uptake of 2-NBDG; d 
pre-selected chemical features
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Fig. 5 Performance of the established BP-ANN model in training (a), test (b) and validation (c) steps. The plot of MSE (d), magnitude of the gradient, 
and the number of validation checks (e) on the establishment of BP-ANN model
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the potential bioactive compounds, the pre-selected 
bioactive compounds were used to construct above-
mentioned PLS model based on the same 78 samples. 
Results (Additional file  1: Fig. S4) indicated that the 
performance of BP-ANN model developed in this study 
was better than PLS model  (R2 < 0.90). The mean impact 
value (MIV) of input variables in the networks were 
employed to evaluate the importance of different vari-
ables in the use of BP-ANN model [32]. The obtained 
MIVs (Additional file  1: Table  S4) showed that 10 out 
of the 18 pre-selected compounds exhibited potential 
anti-diabetes activity.

Identification of Q‑markers based on the summed MIVs
The potential Q-markers were finally screened based 
on the summed MIVs in the BP-ANN model. With 
this approach, a total of 10 compounds with summed 
MIV > 0, mainly consisting of 8 alkaloids, 1 phenolic 
acid, and 1 flavonoid were screened and further identi-
fied as displayed in Table 1. Further comparison analy-
sis of the predicted values with the experimental values 
was performed to estimate the overall performance of 
the 10 screened compounds with the BP-ANN model. 
The anti-diabetes activity could be predicted accurately 
from the screened Q-markers, which produced a reli-
able prediction for the whole dataset as revealed by the 
plot in Fig. 6a–c. Based on the relative abundant of the 
screened compounds, a heatmap visualization used for 
unsupervised clustering was constructed. As displayed 
in Additional file 1: Fig. S5, the content distribution of 
the screened compounds showed no obvious regular-
ity in the 78 batches of samples. Additionally, the con-
tent difference of components in various samples could 
explain the different levels of anti-diabetes activity.

Discussions
Herbal medicines are characterized by multiple compo-
nents co-existing in a prescription and taking effects via 
a multi-target additive, synergistic, and/or competitive 
mode [25]. JQJT has been widely used in clinical practice 
to prevent and treat type 2 diabetes through multi-tar-
gets integrated mechanism [17]. Although considerable 
efforts have been implemented in the characterization of 
complex chemical compositions and metabolites of JQJT, 
various strategies to rapidly and accurately mine Q-mark-
ers associated with bioactivity are in urgent need. In this 
work, 10 potential Q-markers for JQJT were screened 
based on machine learning analysis of the established BP-
ANN model.

Different data pre-processing (feature selection) mod-
els have been considered and selected prior to machine 
learning analysis, such as principal components analysis 
(PCA), naive Bayes, ReliefF, random forest, and support 
vector machines. They could help to extract key chemi-
cal information directly from highly complex datasets 
[20, 33, 34]. Among them, ReliefF algorithm evaluates the 
weight of each input variable and then ranks the variables 
based on their power to predict the target variable. This 
algorithm, not considering each input variable individu-
ally, weights predictive strength in terms of their interac-
tions with other variables [35]. In this study, ReliefF was 
then applied for preliminarily ranking and selecting the 
peaks associated with anti-diabetes activities. Sample 
size requirement to successfully train and utilize ANN 
depends greatly upon the number of the features [36]. 
Considering the relatively small sample size, 18 com-
pounds were selected for subsequent modelling. After 
that, BP-ANN model was established and optimized to 
evaluate the correlations between the selected peak data 
and the bioactivities data. It showed excellent explanatory 

Table 1 Screened potential Q-markers based on mean impact value

Selected 
compounds

Compound name Formula tR /min Experimental m/z Theoretical m/z Common fragment ions

S1 Berberine C20H18NO4 31.87 336.1216 336.123 321.1041, 320.0832, 306.0733, 304.0941, 292.0941

S2 Palmatine C21H22NO4 30.34 352.1514 352.1543 338.1273, 337.1271, 336.1124, 322.1271, 308.1417, 
291.1622

S3 Columbamine C20H20NO4 24.85 338.1353 338.1387 324.1187, 323.1189, 308.1561, 306.0932, 294.1225, 
293.0972

S4 Jatrorrhizine C20H20NO4 25.64 338.1353 338.1387 324.1187, 323.1189, 308.1208, 295.1436

S5 Coptisine C19H14NO4 26.47 320.089 320.0917 318.0861, 293.1106, 292.0846, 290.0876, 264.1363

S6 Epiberberine C20H18NO4 25.31 336.1216 336.123 321.1094, 320.0993, 308.1068, 292.0815

S7 Berberubine C19H16NO4 12.70 322.1064 322.1064 307.0826

S8 Ononin C22H22O9 28.2 431.1305 431.1337 269.1364

S12 1-O-Caffeoylquinic acid C16H18O9 16.21 355.099 355.0945 267.0846, 163.0635

S18 Demethyleneberberine C19H18NO4 22.18 324.1209 324.1231 307.0814, 294.0844, 279.0705, 266.0983
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ability for complex interactions between input and target 
variable, which is consistent with previous studies [37]. 
Finally, MIV was calculated to further screen the poten-
tial Q-markers with bioactivities, and their structures 
were identified based on the corresponding mass spectra.

Using this machine learning model, 10 potential 
Q-markers with bioactivity were discovered from 
JQJT. According to the definition of Q-marker, the 
screened Q-markers were supposed to reflect the effi-
cacy of JQJT. Indeed, most of the screened chemical 
markers represent the “king (Jun)” herb-Coptidis Rhi-
zoma by using this developed method [38]. Eight com-
pounds including berberine, palmatine, columbamine, 
jatrorrhizine, coptisine, epiberberine, berberrubine, 
and demethyleneberberine were the chemical mark-
ers from Coptidis Rhizoma. In consistence with the 
results reported in the previous studies, some of the 
identified compounds exhibited anti-diabetes activity 
through different mechanisms. With this result of the 
respective MIVs, berberine, palmatine, jatrorrhizine, 

epiberberine, and berberubine were assigned as the 
potential bioactive compounds in terms of promo-
tion effect on glucose consumption [39]. Chloro-
genic acid was screened as anti-diabetes compound, 
which has been proven to be responsible for inhibi-
tory potential against α-glucosidase [18]. Besides, ten 
compounds including berberine, columbamine, cop-
tisine, ononin, 5-O-caffeoylquinic acid, loganic acid, 
5-O-caffeoylquinic acid, 3,5-O-dicaffeoylquinic acid, 
luteolin-7-O-β-D-glucopyranoside and demethylen-
eberberine were more responsible for the promotion 
of glucose uptake [40]. Notably, 5-O-caffeoylquinic 
acid, luteolin-7-O-β-D-glucopyranosidea and chloro-
genic acid, the three compounds associated with ame-
liorate effects on α-glucosidase inhibition or glucose 
uptake were explored for the first time. However, this 
strategy linked the bioactivity of JQJT only to the high-
abundant components in the formula rather than the 
binding constants, which may omit the low-abundant 
components with greater binding affinities.

Fig. 6 The visual agreements between experimental and predicted data sets (a Glucose consumption; b α-Glucosidase inhibition; c Uptake of 
2-NBDG)
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Conclusions
This study reports a strategy for screening Q-markers 
with potential anti-diabetes activities by combining 
high resolution mass spectrometry-based untargeted 
metabolomics and BP-ANN-based machine learning 
approach. With the use of this strategy, 10 components 
were selected and identified as potential Q-markers. 
The information generated from the current study 
might pave the way for the preparation and quality con-
trol of JQJT extracts in pharmaceutical industry and 
clinical practice. Further studies would focus on the 
isolation of the screened compounds, and further con-
firmation of their anti-diabetes activities and possible 
synergistic mechanisms.
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