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Abstract
In our previous genome-wide association study, we demonstrated the association between MHC class I-related chain A 
(MICA) and hepatocellular carcinoma (HCC) development in patients with chronic hepatitis C. Increasing membrane-bound 
MICA (mMICA) in cancer cells by reducing MICA sheddases facilitates natural killer (NK) cell-mediated cytotoxicity. Our 
recent study clarified that A disintegrin and metalloproteases (ADAM), including ADAM9, are MICA sheddases in HCC, 
and that the suppression of ADAMs increases mMICA, demonstrating the rationality of mMICA-NK targeted therapy. Fur-
thermore, we showed that regorafenib suppresses ADAM9 transcriptionally and translationally. A library of FDA-approved 
drugs was screened for more efficient inhibitors of ADAM9. Flow cytometry evaluation of the expression of mMICA after 
treatment with various candidate drugs identified leukotriene receptor antagonists as potential ADAM9 inhibitors. Further-
more, leukotriene receptor antagonists alone or in combination with regorafenib upregulated mMICA, which was in turn 
downregulated by leukotriene C4 and D4 via ADAM9 function. Our study demonstrates that leukotriene receptor antagonists 
could be developed as novel drugs for immunological control and suppression of ADAM9 in HCC. Further, leukotriene recep-
tor antagonists should be explored as combination therapy partners with conventional multi-kinase inhibitors for developing 
therapeutic strategies with enhanced efficacies for HCC management and treatment.

Keywords  A disintegrin and metalloprotease 9 · Hepatocellular carcinoma · MHC class I-related chain A · Regorafenib · 
Leukotriene D4

Abbreviations
ADAM	� A disintegrin and metalloprotease
CCK8	� Cell Counting Kit-8
HCC	� Hepatocellular carcinoma
MICA	� MHC class I polypeptide-related sequence A
MKIs	� Multi-kinase inhibitors.

mMICA	� Membrane-bound MICA
MMP	� Matrix metalloprotease
NK	� Natural killer
SEM	� Standard error of the mean
sMICA	� Soluble MICA

Introduction

Even with advancements in cancer treatment and manage-
ment, hepatocellular carcinoma (HCC) remains one of the 
most common causes of cancer-related deaths worldwide. 
HCC could develop from various liver diseases, including 
chronic hepatitis and liver cirrhosis [1]. In Japan, hepatitis 
B or C viral infection is a major cause of HCC [2]. Although 
clinical procedures such as radiofrequency ablation and tran-
sarterial chemoembolization provide excellent local treat-
ment and extend overall survival, sorafenib and lenvatinib, 
which were approved for the treatment of HCC as first-line 
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chemotherapy in 2018 [3], are the only available systemic 
drugs for HCC. Therefore, the identification and develop-
ment of new and better drugs are required for the efficient 
management of HCC.

Recently, the multi-kinase inhibitor regorafenib has 
shown better potency in the Phase 3 RESORCE (Regorafenib 
after sorafenib in patients with hepatocellular carcinoma) 
trial that enrolled patients with sorafenib-resistant HCC [4]. 
Regorafenib is a sorafenib analog approved as a second-line 
therapy to treat colon cancer and pancreatic neuroendocrine 
tumors and is known to disrupt angiogenesis and the tumor 
microenvironment [5–7].

In the tumor microenvironment, an active innate immu-
nity is critical for eliminating cancer cells and preventing 
disease recurrence and metastasis [8]. Cancer immunoedit-
ing is an extrinsic tumor suppressor mechanism that engages 
after cellular transformation has occurred, and intrinsic 
tumor suppressor mechanisms have failed. During its elimi-
nation phase, innate and adaptive immunity work together 
to prevent tumors from developing before they become 
clinically apparent [8]. NK ligands, such as MHC class I 
polypeptide-related sequence A (MICA) binds to activating 
receptors on innate immune cells, leading to the release of 
pro-inflammatory and immunomodulatory cytokines, which 
in turn establish a microenvironment that facilitates the 
development of a tumor-specific adaptive immune response 
[9].

In our previous genome-wide association study (GWAS), 
MICA was identified as an HCC susceptibility gene [10]. 
MICA is an NK group D (NKG2D) ligand expressed on 
the surface of infected or cancerous cells for elimination 
by NK cells. We also showed that the restoration of mem-
brane-bound MICA (mMICA) expression augmented NK 
cell-mediated anti-HCC cytotoxicity [11]. In this prior 
study, the increased expression of MICA specific to HCC 
cells enhanced NK cell-mediated cytotoxicity in co-culture, 
which was further reinforced by treatment with an inhibi-
tor of MICA sheddase. Similarly, the augmented anti-tumor 
activity of NK cells via NKG2D was observed in vivo. 
Importantly, mMICA is subject to proteolytic shedding, 
and the released soluble MICA (sMICA) is an immunologi-
cal decoy, in the serum. A disintegrin and metalloprotease 
(ADAM) and matrix metalloprotease (MMP) have been 
shown to shed mMICA in several cancer cell lines [12].

Sorafenib enhanced NK cell cytotoxicity to HCC by 
downregulating the expression of ADAM9, a protease 
responsible for mMICA shedding [13], and ADAM10 
[14]. Recently, we discovered that regorafenib upregu-
lates mMICA to a greater extent than sorafenib, suppress-
ing ADAM9 in hepatoma cells [15], confirming the role of 
ADAM9 as an immunotherapeutic target. In this study, we 
aimed to identify new inhibitors of ADAM9 from a library 
of FDA-approved drugs in vitro. In addition, the molecular 

effects and immunotherapeutic impacts of the positive hits 
were analyzed in HCC cells.

Materials and methods

Cells, reagents, and antibodies

Sorafenib and regorafenib were obtained from Selleck 
Chemicals (Houston, TX, USA) and Cell Signaling Tech-
nology (Danvers, MA, USA), respectively. Ilomastat, leukot-
riene C4/D4, and pranlukast /montelukast were purchased 
from Selleck (Houston, TX, USA), Cayman CHEMICAL 
(Houston, TX, USA), and TCI (Tokyo, Japan), respectively. 
Cell Counting Kit-8 (CCK8) was purchased from Dojindo 
(Kumamoto, Japan). The FDA-Approved Drug Screen-well 
library was obtained from Enzo Life Sciences (Farmingdale, 
NY, USA). HepG2 and PLC/PRF/5 cells were obtained from 
American Type Culture Collection (Manassas, VA, USA) 
and cultured according to the supplier’s protocols. The cell 
lines were authenticated by short tandem repeat analysis 
(Bex, Tokyo, Japan) in January 2018. ADAM9 siRNA was 
purchased from Dharmacon (Ann Arbor, Michigan, USA).

Cell viability assays

HepG2 and PLC/PRF/5 cells (2 × 105 cells/mL/well) were 
plated in 24-well plates and incubated at 37 °C for 24 h. 
The cells were then treated with ilomastat, leukotriene C4/
D4, pranlukast, montelukast, or regorafenib for 48 h. After 
the treatment, the culture supernatant was removed, and cell 
viability was measured using the CCK8 assay kit (Dojindo). 
Briefly, 1 ml CCK-8 reagent diluted following the manufac-
turer’s instructions was added per well and the plates were 
incubated at 37 °C for 1 h. After incubation, absorbance at 
450 nm was measured using a microplate reader to deter-
mine the number of viable cells’.

ELISA

The concentration of sMICA in the PLC/PRF/5 and HepG2 
cell culture supernatants were assessed using a MICA 
ELISA Kit (Diaclone, Besançon, France) as described pre-
viously [15].

Flow cytometry

Three-milliliters of suspended hepatoma cells (2 × 105 
cells/mL) were added to each well of a 6-cm dish. After 
incubating for 24 h at 37 °C, the cells were treated with 
ilomastat, leukotriene C4/D4, pranlukast, montelukast, or 
regorafenib for 48 h. The cells were then collected and 
incubated with Alexa Fluor 488-conjugated mouse IgG2B 
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isotype control or Alexa Fluor 488-conjugated human 
MICA antibody (R&D Systems, Minneapolis, MN, USA) 
following the manufacturer’s protocol. Fluorescent signals 
were detected using a BD Accuri C6 flow cytometer (BD 
Biosciences, San Jose, CA, USA). Statistical information 
of flow cytometry is shown in (Supplementary Table 1).

Quantitative reverse transcription‑polymerase 
chain reaction (qRT‑PCR)

Relative mRNA levels were quantified as previously 
described [15] using the following primer sets:

MICA-F: 5′-CTT​CCT​GCT​TCT​GGC​TGG​CATC-3′,
MICA-R: 5′-CAG​GGT​CAT​CCT​GAG​GTC​CTTTC-3′,
ADAM9-F: 5′-AAG​AAT​TGT​CAC​TGT​GAA​AAT​GGC​

T-3′,
ADAM9-R: 5′-CAT​TGT​ATG​TAG​GTC​CAC​TGT​CCA​

C-3′,
ADAM10-F: 5′-ACG​GAA​CAC​GAG​AAG​CTG​TG-3′,
ADAM10-R: 5′-CCG​GAG​AAG​TCT​GTG​GTC​TG-3′,
ADAM17-F: 5′-GTC​GAG​CCT​GGC​GGT​AGA​ATC​TTC​

-3′,
ADAM17-R:  5 ′ -CTC​CAC​CTC​TCT​GGG​CAG​

CCTTC-3′,
GAPDH-F: 5′-ATG​GGG​AAG​GTG​AAG​GTC​G-3′,
GAPDH-R: 5′-GGG​GTC​ATT​GAT​GGC​AAC​AATA-3′.

In vitro ADAM9 assay

Recombinant human ADAM9 (R&D systems; 20  µg/
mL) was incubated with a fluorescent peptide substrate 
(BioZyme, NC, USA; 10 μM) in the presence of DMSO or 
individual compounds, following the manufacturer’s instruc-
tions. A library of FDA-approved drugs was tested for enzy-
matic inhibition of ADAM9, with ilomastat as the ADAM9 
control inhibitor. After incubating for 2 h at 37 °C in opaque 
black plates, the fluorescent signals (λ excitation = 485 nm, 
λ emission = 530 nm), and the relative enzymatic activities 
were calculated.

Statistical analyses

All values presented indicate the mean and standard error 
of the mean (SEM) unless otherwise indicated. Differences 
in the expression of mMICA between controls and treated 
samples were determined using Dunnett’s test. Differences 
of sMICA levels between treatment groups and control 
groups were determined using paired, two-tailed Student’s 
t test. P values less than 0.05 were considered statistically 
significant.

Results

ADAM9 inhibition suppressed MICA shedding

To identify the relationship between ADAM9 and mMICA 
shedding in HCC cells, HepG2 and PLC/PRF/5 cells were 
treated with ilomastat, an ADAM9 inhibitor. Ilomas-
tat treatment decreased the sMICA levels by more than 
40% compared to that in the control, with no observable 
cytotoxicity (Fig. 1a). Furthermore, ilomastat treatment 
restored mMICA in HepG2 and PLC/PRF/5 cells (Fig. 1b).

A previous study reported a 70% decrease in sMICA 
in the supernatant of ADAM9 siRNA (siADAM9)-trans-
fected cells [15]. In our study, the upregulation of mMICA 
was confirmed by siADAM9 treatment in HepG2 cells 
(Fig. 1c). Meanwhile, ilomastat did not affect the mRNA 
expression of MICA or ADAM9. In addition, levels of 
ADAM10 and ADAM17, the known MICA sheddases 
in HCC, remained unaffected (Supplementary Fig. 1a) 
[13–16].

Leukotriene receptor antagonists inhibited ADAM9 
activity in vitro

We recently established a new in vitro system to evaluate 
ADAM9 activity similar to our previous assay system for 
ADAM17 [17]. An in vitro screen using a library of FDA-
approved drugs identified that leukotriene receptor antag-
onists, pranlukast, and montelukast, dramatically sup-
pressed the enzymatic activity of ADAM9, at 34 μM and 
41 μM concentrations, respectively (Fig. 2a). The in vitro 
assays confirmed that both pranlukast and montelukast 
inhibited ADAM9 in a dose-dependent manner (Fig. 2b). 
However, pranlukast and montelukast did not suppress the 
enzymatic activities of known MICA sheddases in HCC 
ADAM10 and ADAM17, in vitro (Supplementary Fig. 1b).

Leukotriene receptor antagonists elevated mMICA 
levels

Next, we tested the effects of pranlukast and montelukast 
on mMICA in HepG2 and PLC/PRF/5 cells. A 48 h treat-
ment with 50 µM pranlukast or montelukast increased 
mMICA expression in HepG2 cells (Fig. 2c) statistically 
significantly (Supplementary Table 1). The same tendency 
was observed in PLC/PRF/5 (Fig. 2c) without significance 
in this setting (Supplementary Table 1).

This leukotriene receptor antagonist treatment-induced 
increase in mMICA was canceled in the presence of si-
ADAM9 in HepG2 (Fig.  2d). A similar trend, though 
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weaker in a limited fashion without reaching statistical 
significance, was observed consistently in PLC/PRF/5. 
These treatments did not induce any cytotoxicities in either 
cell line (Supplementary Fig. 1c).

Further, the effects of leukotriene receptor antagonists on 
sMICA concentration were examined in HepG2 and PLC/
PRF/5 cells. Interestingly, montelukast treatment suppressed 
sMICA levels, while pranlukast treatment increased the lev-
els of sMICA in HepG2 and PLC/PRF/5 cells (Fig. 2e). Fur-
thermore, montelukast and pranlukast treatments increased 
the mRNA expression of MICA; and, treatment with 50 µM 
montelukast decreased ADAM10 and increased ADAM17 
mRNA levels (Fig. 2f). The changes in the transcriptional lev-
els and enzymatic activity of MICA and ADAM after treat-
ment with montelukast/ pranlukast are shown in (Supplemen-
tary Table 2).

Leukotriene D4 increased sMICA release 
and decreased mMICA levels

Pranlukast and montelukast are known to block leukotriene 
C4 and leukotriene D4 [18]. Among multiple molecules in 
the arachnoid acid- leukotriene pathway, the suppressive 
effect of pranlukast and montelukast is most potent against 
leukotriene D4, followed by leukotriene C4 [18]. Next, we 
investigated the influence of leukotriene C4/D4 on sMICA 
levels. Treatment with leukotriene C4 and leukotriene D4 
did not induce cytotoxicity (Fig. 3a). Further, treatment with 
leukotriene D4 increased sMICA levels in HepG2 cells, 
while leukotriene C4 treatment did not increase sMICA 
(Fig. 3b). The mRNA levels of ADAM9, ADAM10, and 
ADAM17, as well as MICA, were not changed (Supplemen-
tary Fig. 1D, E).
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Fig. 1   ADAM9 inhibitor, ilomastat, decreased sMICA secretion 
by HCC cells. a PLC/PRF/5 and HepG2 cells were treated with ilo-
mastat for 48 h and the cell viabilities and sMICA levels were deter-
mined by CCK8 assay and ELISA, respectively. HepG2 and PLC/
PRF/5 cells were treated with ilomastat (b) (no treatment in black 
and HepG2 and PLC/PRF/5 treated with ilomastat in red and in blue, 
respectively) or siRNA against ADAM9 (c) (siCtrl and siADAM9 in 

black and red, respectively) for 48 h and mMICA level was assessed 
by flow cytometry; the isotype controls are shown as gray histograms. 
Fluorescence intensity and cell counts are indicated on the X and Y 
axis, respectively. **P < 0.01; ***P < 0.005. Error bars represent 
SEM. Representative data from three independent experiments with 
consistently similar results are shown. ILM ilomastat
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In addition, leukotriene C4/D4 decreased mMICA lev-
els in HepG2 and PLC/PRF/5 cells (Fig. 3c). However, the 
downregulation of mMICA by leukotriene D4 was abrogated 
by the knockdown of ADAM9 in HepG2 cells (Fig. 3d) with 
a limited impact as statistical significance was not achieved.

Combination treatment of leukotriene receptor 
antagonists and clinical multi‑kinase inhibitors 
(MKIs)

We and others have reported that the currently approved 
MKIs against HCC, SOR, as well as REG, transcription-
ally inhibits ADAM9 [13, 15], whose concurrent enzymatic 
inhibition by leukotriene receptor antagonists is therefore 
presumed to further enhance the expression of mMICA. To 
examine this hypothesis, we treated HepG2 cells for 48 h 
with 2 µM MKIs and leukotriene receptor antagonists. As 
hypothesized, the combination treatments enhanced mMICA 
levels more than either monotherapies (Fig. 4a) while the 
impacts were limited without achievement of statistical 
significance. The same trend, though less pronounced, was 
observed in PLC/PRF/5 cells (data not shown). In addition, 
in accordance with mMICA levels, the combination treat-
ment with REG and montelukast decreased sMICA levels in 
HepG2 cells more than that with REG monotherapy and did 
not show significant cytotoxicity (Fig. 4b, c).

Discussion

The concept of cancer immunoediting and the contribution 
of innate immunity are now recognized to be indispensable 
to eliminate cancer cells [8]. In the elimination phase of 
cancer immunoediting, MICA binds to activating recep-
tors on NK cells, leading to the release of pro-inflammatory 
and immunomodulatory cytokines. NK cells are highly 
accumulated in the human liver, representing 30–50% of 
all hepatic lymphocytes and activate NK cells through the 
MICA-NKG2D system [19]. Suppression of ADAM9 activ-
ity enhanced the NK cell cytotoxicity against HCC by upreg-
ulating mMICA [13, 15]. ADAM9 has also been reported to 
be overexpressed in the cancer microenvironment of several 
cancer types, including liver cancer [20–24].

In this study, we discovered that leukotriene receptor 
antagonists, pranlukast, and montelukast, suppress ADAM9 
activity in vitro (Fig. 2a, b), indeed increasing mMICA lev-
els in HepG2 and PLC/PRF/5 cells (Fig. 2c) without cyto-
toxic effects (Supplementary Fig. 1c). The effect via direct 
targeting of ADAM9 was confirmed by siADAM9-mediated 
partial abrogation of the leukotriene receptor antagonist-
induced upregulation of mMICA (Fig. 2d). Our previous and 
current studies demonstrated the upregulation of mMICA 
after ADAM9 downregulation [15] and ADAM9 inhibition 

(Fig. 1b), suggesting that ADAM9 contributes to the shed-
ding of mMICA.

Notably, ADAM9 is acknowledged as a putative therapeu-
tic target in HCC owing to its role in the immune microenvi-
ronment and cancer development [20]. Previous studies have 
demonstrated the relationship between ADAM9 expression 
and clinicopathological features, including disease progno-
sis, shortens overall survival, tumor grade, metastasis, and 
the development of resistance in various cancers, includ-
ing HCC [20]. One potential mechanism by which ADAM9 
expression affects the overall survival of HCC patients is 
its involvement in MICA shedding [13, 15]. Also Dengdi 
et al. reported that the miR-488, targeting ADAM9, is nega-
tively associated with tumor size, and shorter overall sur-
vival in HCC patients, as a tumor suppressor and a potential 
therapeutic target [25]. In addition, ADAM9 was recently 
reported to mediate IL-6 induced epithelial-mesenchymal 
transition (EMT), resulting in IL-6 induced HCC cell migra-
tion and invasion [26].

Two different approaches could be used to inhibit 
ADAM9 in cancer treatment. First, as with sorafenib/
regorafenib, ADAM9 function could be inhibited by 
decreasing its transcription levels [13, 15]. Second, the 
enzymatic activity of ADAM9 could be suppressed, which 
was achieved by using leukotriene receptor antagonists in 
this study. Treatment with pranlukast induced the expres-
sion of MICA at the transcription level more than that with 
montelukast treatment (Fig. 2e, f). Increased transcriptional 
expression of MICA generally increases sMICA as well as 
mMICA as the amount of sMICA is correlated with mMICA 
level when the shedding efficiency is unchanged.

In this study, treatment with montelukast, but not with 
pranlukast, significantly decreased sMICA concentra-
tion (Fig. 2e), presumably due to the structural differences 
between montelukast and pranlukast. As a result, montelu-
kast suppressed the function of ADAM9 and ADAM10 enzy-
matically and transcriptionally, respectively. At the same 
time, the transcriptional level of ADAM17 was increased 
(Fig. 2b, f), indicating the balance of MICA sheddases in 
HCC, which was reported in our previous study [16]. As we 
previously tested, PLC/PRF/5 and HepG2 cells transfected 
siRNAs against ADAM9, ADAM10, and ADAM17 showed 
significantly decreased sMICA levels [17]. Although mon-
telukast increased mRNA levels of ADAM17 and MICA, 
it significantly decreased ADAM10 mRNA and ADAM9 
enzymatic activity. As a result, sMICA production was 
suppressed due to the reduced activity of ADAM9 and 
ADAM10, as shown in Supplementary Table 2. Interest-
ingly, combination therapy with a transcriptional inhibitor 
and an enzymatic inhibitor induced a much higher increase 
in mMICA levels than the monotherapies, potentially due to 
the enhanced anti-HCC activity of NK cells that was previ-
ously demonstrated in vitro and in vivo [11].
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As mentioned above, treatment with 100 µM leukotriene 
C4/D4 for 96 h decreased mMICA expression in HepG2 
cells (Fig.  3c) more than that with the 48  h treatment 
(Fig. 3d). Furthermore, treatment with siADAM9 abro-
gated the decrease in mMICA in cells treated with 100 µM 
leukotriene C4/D4; since treatment with leukotriene C4/D4 
increased sMICA, leukotriene C4/D4 induced MICA shed-
ding via ADAM9 (Fig. 3d). Since leukotriene D4 decreased 
mMICA levels in HepG2 and PLC/PRF/5 cells and the 
downregulation of mMICA by leukotriene D4 was abrogated 
by the knockdown of ADAM9 in HepG2 cells (Fig. 3d), leu-
kotriene D4 enhances mMICA shedding through ADAM9. 
Collectively, leukotriene signaling was indicated to be 
involved in the regulation of ADAM9.

Furthermore, Zhou et al. reported that circulating leu-
kotriene D4 in HCC patients is significantly higher than 
that in healthy subjects, and may have a role in the patho-
genesis of HCC [27]. Leukotriene D4 is widely considered 
to induce tumor proliferation and correlate negatively with 
patient survival in colon cancer [28–30]. Further studies on 
the molecular genetics of ADAM9, the tumor microenviron-
ment, and cancer metabolism are required to understand the 
pro-tumoral effects of leukotriene D4.

These data indicate the potential for suppression of leu-
kotriene C4 and leukotriene D4 with leukotriene receptor 

Fig. 2   Leukotriene receptor antagonists inhibited ADAM9 in  vitro 
and enhanced mMICA level in HCC cells. a Inhibitory effects of 
approved drugs on ADAM9 in  vitro. b Enzymatic inhibition of 
ADAM9 by pranlukast or montelukast in  vitro. c After treatment 
with pranlukast and montelukast, mMICA expression was analyzed 
by flow cytometry in HepG2 and PLC/PRF/5 cells; mMICA expres-
sion increased after 48  h treatment with no treatment, 50  µM mon-
telukast, and 50 µM pranlukast in black, blue, and, red, respectively. 
The isotype controls are shown as gray histograms, and fluorescence 
intensity and cell counts are indicated on the X and Y axis, respec-
tively. d The effects of pranlukast on mMICA expression in HepG2 
cells were examined in the presence of siCtrl (0 and 50 µM in black 
and blue, respectively) or siADAM9 (0 and 50  µM shown in black 
and red, respectively) by flow cytometry. The isotype controls are 
shown as gray histograms, and fluorescence intensity and cell counts 
are indicated on the X and Y axis, respectively. e sMICA levels were 
determined by CCK8 assay and ELISA, respectively, after treatment 
with pranlukast and montelukast in HepG2 and PLC/PRF/5 cells. f 
Relative mRNA levels of MICA and ADAMs were analyzed by qRT-
PCR after pranlukast / montelukast treatment. *P < 0.05; **P < 0.01; 
***P < 0.005. Error bars represent SEM. Representative data from 
three independent experiments with consistently similar results are 
shown
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antagonists to enhance the elimination of cancer cells by 
NK cells through ADAM9 inhibition, and subsequent inhi-
bition of MICA shedding, potentially upregulating MICA 
expression. The improved potency of leukotriene recep-
tor antagonists emphasizes the significance of ADAM9 in 
HCC progression and suggests that leukotrienes may be 

important druggable targets to boost mMICA and restore 
innate immunity against HCC. Further studies are required 
to confirm that the restoration of MICA by the leukotriene 
receptor antagonists improves tumor-killing.

Following our discovery in  vitro, open questions 
regarding the chemical mode of inhibition of ADAM9 
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Fig. 3   Impact of leukotriene C4/D4 on sMICA production by shed-
ding mMICA via ADAM9 in HCC cells. Cell viabilities (a) and 
sMICA levels (b) were determined by CCK8 assay and ELISA, 
respectively, after treating HepG2 and PLC/PRF/5 with leukotriene 
C4/D4. (c) HepG2 and PLC/PRF/5 cells were treated with 100  µM 
leukotriene C4/D4 for 96 h, and mMICA level was assessed by flow 
cytometry. The isotype controls are shown as gray histograms (no 
treatment, leukotriene C4, and leukotriene D4 shown in black, blue, 
and red, respectively), and fluorescence intensity and cell counts are 

indicated on the X and Y axis, respectively. d The effect of leukot-
riene D4 for 48 h on mMICA level in HepG2 cells was examined in 
the presence of siCtrl (0 and 100 µM in black and blue, respectively) 
or siADAM9 (100 µM shown in red) by flow cytometry. The isotype 
controls are shown as gray histograms and fluorescence intensity and 
cell counts are indicated on the X and Y axis, respectively. *P < 0.05; 
**P < 0.01; ***P < 0.005. Error bars represent SEM. Representative 
data from three independent experiments with consistently similar 
results are shown
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by leukotriene antagonists, the mechanism of ADAM9 
regulation by leukotriene signaling, immunotherapeutic 
efficacy of the leukotriene receptor antagonists combined 
with MKIs and related molecular as well as therapeutic 
aspects remain. All these intriguing viewpoints to be con-
sidered in upcoming studies will uncover the mechanistic 
link between leukotriene signaling and ADAM9 and will 
develop methods of pharmacological modulation.

Recently, regorafenib was reported to improve the out-
come in HCC patients with sorafenib-resistant disease in 
the RESORCE trial [4]. This was possibly explained by 
our previous study indicating that regorafenib potentiates 
immune-mediated HCC cell death by promoting mMICA 
expression to a greater extent than sorafenib, by mainly 
targeting ADAM9 [15]. Again, our results would serve 
to develop a critical strategy to identify new treatment 
options for HCC. Importantly, leukotriene receptor antago-
nists could be an attractive agent for the immunological 
control of HCC, which also suppresses ADAM9 enzymati-
cally, resulting in increased treatment efficacy when used 
in combination with conventional MKIs.
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