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Abstract 

Cytometry by time-of-flight (CyTOF) simultaneously measures multiple cellular proteins at 

the single-cell level and is used to assess inter- and intra-tumor heterogeneity. This approach 

may be used to investigate the variability of individual tumor responses to treatments. Herein, 

we stratified lung tumor subpopulations based on AXL signaling as a potential targeting 

strategy. Integrative transcriptome analyses were used to investigate how TP-0903, an AXL 

kinase inhibitor, influences redundant oncogenic pathways in metastatic lung cancer cells. 

CyTOF profiling revealed that AXL inhibition suppressed SMAD4/TGF-β signaling and induced 

JAK1-STAT3 signaling to compensate for the loss of AXL. Interestingly, high JAK1-STAT3 was 

associated with increased levels of AXL in treatment-naïve tumors. Tumors with high AXL, TGF-

β and JAK1 signaling concomitantly displayed CD133-mediated cancer stemness and hybrid 

EMT features in advanced stage patients, suggesting greater potential for distant dissemination. 

Diffusion pseudotime analysis revealed cell-fate trajectories among four different categories that 

were linked to clinicopathologic features for each patient. Patient-derived organoids (PDOs) 

obtained from tumors with high AXL and JAK1 were sensitive to TP-0903 and ruxolitinib (JAK 

inhibitor) treatments supporting the CyTOF findings. This study shows that single-cell proteomic 

profiling of treatment-naïve lung tumors, coupled with ex vivo testing of PDOs, identifies 

continuous AXL, TGF-β and JAK1-STAT3 signal activation in select tumors that may be 

targeted by combined AXL-JAK1 inhibition. 

 

Significance: Single-cell proteomic profiling of clinical samples may facilitate the optimal 

selection of novel drug targets, interpretation of early-phase clinical trial data and development 

of predictive biomarkers valuable for patient stratification. 
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Introduction 

AXL, a member of Tyro3-AXL-Mer (TAM) receptor tyrosine kinases (RTKs), is a promising 

therapeutic target in lung cancer (1,2). Frequently overexpressed in metastatic tumors, AXL is 

associated with drug resistance and poor survival outcomes (3-7). The oncogenic action is 

achieved primarily through AXL dimerization or hetero-dimerization with other RTKs, which 

activates TAM kinases in a ligand-dependent or -independent manner for downstream 

oncogenic networks, promoting cancer stemness and epithelial-to-mesenchymal transition 

(EMT) (8,9). Upon acquiring an EMT phenotype, lung cancer cells show loss of cell-to-cell 

contacts and escape from primary sites into the circulation and lymphatic channels (10-14). 

These invasive cells then revert back to an epithelial state during tumor implantation on vital 

organs. It is also believed that hybrid EMT states of invasive cells contribute to immune evasion 

and distant colonization (10-14). Other major pathways known to regulate 

mesenchymal/epithelial plasticity for advanced tumor phenotypes include transforming growth 

factor  (TGF-), epidermal growth factor, hepatocyte growth factor, and the WNT/-catenin and 

NOTCH pathways (10,11,13,15,16). Elucidation of those complex pathways and their 

partnership with AXL is critically important for developing combination treatment strategies in 

lung cancer. TP-0903 is a small molecule inhibitor of AXL kinase and have 80% inhibition of 

other two TAM family currently being investigated in patients with refractory lung cancer and 

solid tumors (17,18). Despite the advance of AXL inhibitors in the clinic, little is known about 

resistance mechanisms of these treatments in lung cancer. We speculate that oncogenic 

signaling crosstalk and bypass mechanisms orchestrated by deregulated AXL in vitro is similarly 

observed in treatment-naïve tumors. 

Knowledge of diverse tumor subpopulations during lung cancer progression is essential for 

understanding differential responses to AXL treatment. In this regard, cytometry by time-of-flight 

(CyTOF) is a single-cell detection technology that allows for measurement of 30-45 protein 
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markers in diverse cell subpopulations of a tumor (19-21). This high-dimensional analysis has 

been described as a “single-cell atlas” of tumor ecosystem, which can link a tumor’s cellular 

landscape with its clinicopathologic features. For example, CyTOF is being used to profile the 

immune ecosystem in early-stage lung adenocarcinoma for optimal design of immunotherapies 

(22,23). In this way, CyTOF is becoming integrated in the drug screening process and can 

detect intracellular signaling perturbations to short-term drug exposure for prediction of long-

term response (24-26). CyTOF also provides opportunities for studying cellular dynamic 

processes that can be modeled using a trajectory inference method, also called pseudotime 

analysis, to predict tumor cell progression and lineage branching (27). 

In this study, we first conducted transcriptomic analysis of metastatic lung cancer cells to 

probe key pathways perturbed by TP-0903. The profiling revealed previously uncharacterized 

AXL-associated signaling pathways that contribute to diversified treatment responses of lung 

tumor subpopulations. From the in silico analysis, we designed a CyTOF panel of 21 antibodies 

to recognize AXL, SMAD4/TGF- and JAK1-STAT3 signaling components, characteristics of 

cancer stemness and EMT. The CyTOF panel was used to assess intra- and inter-tumor 

heterogeneity and stratify tumor subpopulations based on their AXL expression and signaling 

networks as a potential targeting strategy. Computational modeling with pseudotime analysis 

further ordered tumor cells along a trajectory based on similarities in their CyTOF expression 

patterns and comparisons made based on clinicopathologic features of patients. We also 

determined the feasibility of using tumor CyTOF data to identify patient-derived organoids 

(PDOs) suitable for combined AXL-JAK1 targeting. We suggest this work as a step toward a 

broader strategy will ultimately account for tumor heterogeneity at the single-cell level to 

optimize combination treatments in lung cancer patients. 
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Materials and Methods 

Patient samples 

Fresh lung tumors were obtained from treatment naïve patients (n=11) with non-small cell 

lung cancer at the time of surgery (Supplementary Table S1). Peripheral blood mononuclear 

cells (PBMCs) were isolated from two blood samples of a patient before and after surgery 

(Detail in the supplementary method). The protocol was approved by the University of Texas 

Health Science Center Institution Review Board. All patients were enrolled at the University of 

Texas Health Science Center at San Antonio between October 2018 and July 2019. Written 

informed consent was obtained from all patients in compliance with the Declaration of Helsinki, 

Belmont Report, US Common Rule following the US Department of Health and Human Services 

and the FDA regulations and GCP (Good Clinical Practice) guidelines. No patients received any 

prior treatment, and the site from which specimens were obtained had not been previously 

treated with radiotherapy. For CyTOF assays, tumor samples were digested into single-cell 

suspensions as described (28). 

 

Cell lines 

A549 and H2009 cell lines were obtained from and authenticated by the American Type 

Culture Collection, and routinely maintained in RPMI-1640 medium supplemented 10% FBS, 

penicillin (100 units/mL) and streptomycin (100g/mL) in aired with 5% CO2 at 37 °C. The 

absence of Mycoplasma contamination was validated using DAPI staining. These cells were 

treated with TP-0903 and/or ruxolitinib (SelleckChem) at appropriate doses over 72 hr. The 

CellTiter-Glo Luminescent Cell Viability assay was used to determine cell responsiveness. 

shRNA knockdown was performed in A549 cells by using lentiviral delivery of short-hairpin AXL 

or vehicle plasmid pLKO.1 puro in two biological repeats (Addgene; Supplementary Table S2) 

(29). 
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Patient-derived organoids (PDOs) 

Tumor tissues were minced on ice into 1 mm3 small pieces. Tumor pieces (~20 l in 

volume) were resuspended in 200 l Matrigel and seeded into 24 well plates for 15 min until gel 

solidify, followed by culture in advanced DMEM/F12 medium supplemented with B27 and N2 

(Thermo Fisher Scientific), 0.01% BSA (Roche), 100 units/mL penicillin-streptomycin (Thermo 

Fisher Scientific), and others (Supplementary Table S3) for 4-8 weeks to grow organoids  (30). 

Organoids were digested into single-cell suspensions and treated with 1) TP-0903, 20 nmol/L; 

2) ruxolitinib, 15 mol/L; 3) TP-0903 plus ruxolitinib; and 4) DMSO control for 72 hr in 5 

replicates per treatment with 200 cells per replicate. The CellTiter-Glo Luminescent Cell Viability 

assay was used to determine drug responsiveness. 

 

Cytometry by time-of-flight (CyTOF) 

Antibodies were conjugated in-house according to the manufacturer’s instructions or 

purchased in pre-conjugated forms from the supplier (Fluidigm; Supplementary Table S4). 

Single cells from cell lines, tumors, or PBMCs were harvested and stained with cisplatin and 

metal-conjugated surface antibodies sequentially for viability and surface staining. After fixation 

and permeabilization, cells were stained with metal-conjugated antibodies. The cells were then 

labeled with an iridium-containing DNA intercalator (191Ir+ or 193Ir+) for identification of cell events 

before analysis on a Helios mass cytometer. Signals were bead-normalized using EQ Four 

Element Calibration Beads. 

Signals of samples were normalized using CyTOF software (Version 6.7.1014, Fluidigm). 

The generated files underwent signal cleanup and filtering for single cells using Cytobank 

(https://www.cytobank.org/). The gated Flow Cytometry Standard (FCS) file were downloaded 

for further analysis using Cytofkit. The PhenoGraph clustering algorithm in Cytofkit was 
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implemented in R from the Bioconductor website (https://bioconductor.org/packages/cytofkit/). 

CyTOF data were clustered and visualized using t-distributed stochastic neighbor embedding (t-

SNE) algorithm based on normalized expression levels (Z-score) of 21 markers (AXL, JAK1, 

pSTAT3, SMAD2, SMAD4, TGFBRII, OCT3/4, NANOG, CD133, CD44, ALDH1A1, SNAIL, 

TWIST, Vimentin, N-cadherin, Fibronectin, -catenin, ZO-2, PECAM, EpCAM, and CK8/18) and 

plotted on a continuum of protein expression with phenotypically related cells clustered together 

(31,32). Violin plots and scatter plots were generated by R package ggplot2 based on Z-score 

from the results of Cytofkit. Epithelial and mesenchymal indices were calculated based on the 

average Z-score of epithelial and mesenchymal markers. Pseudotime analysis was performed 

with the destiny package in R using expression levels of oncogenic signaling markers from 

normalized CyTOF data from individual patients to calculate dimensionality of data (DC1 and 

DC2) and diffusion pseudotime (DPT) (33). Diffusion maps were plotted based on 

dimensionality of data and DPT using R package ggplot2. 

 

Atomic force microscopy (AFM) 

AFM was performed to determine response of mechanical properties of lung cancer cells to 

TP-0903 treatment (34). Briefly, live cells cultured in 60 mm dishes were imaged with a 

Nanoscope Catalyst AFM (Bruker) mounted on a Nikon Ti inverted epifluorescent microscope. 

The cells were treated with 40 nmol/L TP-0903 or DMSO (control) for 24 hr. To collect the 

nanomechanical phenotypes of single cells immersed in culture media, we captured 30 x 30 m 

images with a resolution of 256 x 256 pixels using the Peak Force Quantitative Nanomechanical 

Mapping (QNM) AFM (Bruker). For imaging, SCANASYST-AIR probes were used with the 

nominal spring constant 0.4 N/m. Following the Sneddon model and the Sokolov’s rules (35), 

nanomechanical parameters were calculated with Nanoscope Analysis software v.1.7 using 

retrace images. 
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Statistical analysis 

Statistical significance was determined in GraphPad Prism by using Student t test (unpaired 

2-tailed) and Duncan multiple range test for comparing pre- and post-treated cell lines among 

groups. 
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Results 

Compensatory activation of JAK1-STAT3 following anti-AXL treatment 

AXL overexpression in primary lung tumors is a single negative predictor of survival 

outcomes and represents a potential drug target (Supplementary Fig. S1A-C) (5). Accordingly, 

we first tested the effects of AXL inhibition on the growth of two metastatic lung cancer cell lines 

A549 and H2009 (Supplementary Fig. S1D). Proliferation rates decreased with increasing 

concentrations of TP-0903 (AXL inhibitor) in both cell lines and with shAXL knockdown in A549 

cells (Supplementary Fig. S1E and S1F). Growth inhibition was confirmed in an A549-derived 

mouse xenograft model (Supplementary Fig. S1G). To determine the effect of AXL inhibition on 

gene expression, RNA-seq was conducted in A549 cells treated with TP-0903 (40 nmol/L) or 

shAXL knockdown and vehicle control cells (Supplementary Fig. S2A and S2B). Pathway 

enrichment analysis of differentially expressed genes showed that TGF-signaling axis was 

attenuated by AXL inhibition, but JAK1-STAT3 signaling was upregulated likely due to a bypass 

mechanism (Supplementary Fig. S2C-E). Transcriptomic alterations in cancer stemness and 

EMT programs were also observed in TP-0903-treated cells (Supplementary Fig. 2F and 2G). 

Capillary WES protein analysis confirmed the downstream influence of AXL on TGF- signaling, 

but the TP-0903 treatment had minor effects on suppressing the oncoproteins well-known for 

AXL-associated pathways (Supplementary Fig. S3 and S4) (9). 

 

Effective targeting of AXL and JAK1 in metastatic cancer cells 

To further probe AXL and JAK1-STAT3 signaling in different tumor populations, we 

analyzed the CyTOF data to identify common cellular communities among both cell lines 

untreated and treated with TP-0903 (n=4) and untreated lung tumors (n=11) (36). A total of 21 

antibodies for CyTOF were selected for subpopulation analysis: 1) oncogenic signaling 

components of AXL, JAK1-STAT3 and TGF-; 2) markers for cancer stemness; and 3) EMT 
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(Fig. 1A) (37,38). Markers for immune, stromal and endothelial cells were initially used to 

segregate non-epithelial components in lung tumors and PBMCs. Leukocyte common antigen 

(CD45)-negative epithelial cell subpopulations were manually gated based on the expression of 

CK8/18 and EpCAM (Fig. 1B). Second, tSNE was used to cluster single cells based on shared 

protein expression collectively to identify metaclusters common across all samples. A total of 

92,798 CD45-/CK8+/18+/EPCAM+ single cells were categorized into 27 subpopulations (Fig. 1C). 

Diverse expression profiles of oncogenic signaling, stemness and EMT were observed among 

these subpopulations from all samples (Fig 1D-G). There was also extensive inter-patient 

variability (Fig.1 H-L; Supplementary Fig. S5-S14). 

In general, subpopulations from cell lines displayed less variability than lung tumors based 

on CyTOF profiling of the aforementioned markers (Fig. 2A). In untreated A549 cells, there was 

one dominant subpopulation (#9) with high AXL expression. Following TP-0903 treatment at 40 

nmol/L, three new subpopulations emerged in A549 cells with #6 and 7 displaying high levels of 

AXL and #8 exhibiting attenuated AXL (Fig. 2B, left panel). High JAK1-STAT3 signaling 

activities were observed in these subpopulations, supporting the original RNA-seq findings that 

JAK1-STAT3 might serve as a bypass mechanism leading to drug resistance (Supplementary 

Fig. S2E). Specifically, phosphorylated STAT3 (pSTAT3) levels were dramatically increased in 

A549-treated cells while JAK1 stably maintained high activities even in the presence of TP-0903 

(Fig. 2B). Consistent with the capillary WES protein analysis (Supplementary Fig. S3 and S4), 

this treatment suppressed SMAD4 in the three main subpopulations of A549 cells (#6-8) (Fig. 

2B). The upregulation of SMAD2 might be promoted via increasing pSTAT3 (Fig. 2B) (39). The 

second cell line H2009 was less responsive to AXL inhibition based on CyTOF data, confirming 

prior observations by capillary WES (Supplementary Fig. S3 and S4). In this cell line, 

subpopulations #12a and 12b displaying high AXL levels were observed prior to the TP-0903 

treatment. Two main tumor subpopulations (#15 and 16) emerged following the treatment and 

had amplified JAK1-pSTAT3 expression, implicating a drug resistant phenotype. Compared to 
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JAK1 signaling, AXL and SMAD4 had lower expression suggesting drug influence on these 

signaling pathways (Fig. 2C). Taken together, this CyTOF analysis of metastatic cell lines 

identified signaling components of JAK1-STAT3 that can be either extrinsically induced by AXL 

inhibition or intrinsically present as a bypass mechanism for cell survival and invasion. 

The above in vitro study indicated that a single-target drug treatment is not effective in 

repressing lung cancer progression. To verify JAK1 as a potential bypass mechanism of AXL 

inhibition, short-term (72 hr) testing of TP-0903 and/or ruxolitinib (JAK inhibitor) was pursued in 

A549 and H2009 cells (Fig. 2D). Compared with the H2009 line, A549 cells were again more 

sensitive to TP-0903 treatments at 20, 30 and 40 nmol/L. However, the cell killing effect became 

more apparent in both cell lines when ruxolitinib (15 and 20 mol/L) was additionally included in 

the treatment (P < 0.001). To confirm the finding of CyTOF and drug combination effect, 

western blots revealed upregulation of oncogenic signaling markers (JAK, STAT3, pSTAT3 and 

pAKT), increasing cancer stemness (CD133 and ALDH1A1), and upregulation of epithelial 

(EpCAM and CK8/18) and mesenchymal (Vimentin and N-cadherin) markers in TP-0903-treated 

A549 cells (Supplementary Fig. S15). The level of pSTAT3 and pAKT was additionally reduced 

in treated H2009 cells. Combination treatment with TP-0903 (20 nmol/L) and ruxolitinib (15 

mol/L) greatly attenuated JAK1, pSTAT3, pAKT, CD133, Vimentin, and EpCAM compared with 

single agent TP-0903 in both cell lines (Supplementary Fig. S15). Together, this result suggests 

that the combined therapy may be effective in suppressing lung cancer cells with activated AXL 

and JAK1-STAT3 and supports the CyTOF and RNA-seq findings.  

 

Increased JAK1-STAT3 and TGF- in AXL-overexpressing cell subpopulations 

To explore intra-tumor and inter-patient heterogeneity of AXL-related oncogenic signaling 

activities in lung tumors, we classified the aforementioned 27 subpopulations into four 

categories (i.e., I, II, III, and IV) on the basis of 1) AXL expression levels, 2) JAK (JAK1 and 
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pSTAT3) and TGF- (SMAD2, SMAD4, and TGFBRII) signaling components, and 3) 

subpopulation sizes (Fig. 3A and 3B). Violin plot analysis further supported this subpopulation 

categorization: I) low expression of AXL, JAK1 and TGF- signaling components; II) 

intermediate expression of AXL and high expression of JAK1 and TGF- signaling components; 

III) high expression of AXL and TGF- and intermediate expression of JAK1 signaling 

components; and IV) High expression of all five signaling components, including AXL (Fig. 3C). 

Collectively, cell lines demonstrated less heterogeneity than lung tumors. The majority (57-98%) 

of subpopulations in cell lines assigned to Category IV exhibited concomitant upregulation of 

AXL, JAK1, and TGF- signaling (Fig. 3A, 3B, and 3D). As redundant mechanisms, these 

signaling components had already existed in some subpopulations or could be induced through 

in vitro inhibition of AXL. The remaining subpopulations were assigned to Category I-III with 

intermediate signaling activities. 

Compared to cell lines, lung tumor subpopulations were more diverse, spanning all four 

categories (Fig. 3A and 3B). For example, tumor subpopulations of patient (Pt) 008 and 010 

belonged to Category I and II (Fig. 3C and 3D). Pt 004, 014 and 017 had predominant Category 

II subpopulations (Fig. 3C and 3D). Pt 006 had 67% tumor cells in Category III (Fig. 3C and 3D).  

Subpopulations of Pt 002, 007, 009, 012, and 016 were preferentially assigned to Category IV 

(Fig. 3C and 3D). This inter-patient variability spanning all four categories underscores the need 

for tailored treatments based on a tumor’s predominant phenotype. Category II and IV 

subpopulations cells were present in every patient to varying degrees, suggesting pre-existing 

and redundant signaling pathways in treatment-naïve lung tumors (Fig. 3D). Furthermore, 464 

circulating tumor cells (CTCs) derived from PBMC of Pt 006 belonged exclusively to Category 

IV, confirming a greater potential of these cells to disseminate to vital organs of the patient 

through the blood circulation (Supplementary Fig. S16). 
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Increased cancer stemness and hybrid EMT in AXL-overexpressing cell subpopulations 

AXL and JAK1 signaling are well-established in cancer stemness regulation (8,40). 

Therefore, we included cancer stemness markers OCT3/4, NANOG, CD133, CD44 and 

ALDH1A1 in our CyTOF analysis. Generally speaking, the highest expression of cancer 

stemness markers was observed in Category III/IV subpopulations of cell lines and lung tumors 

(Fig. 4A and 4B). Furthermore, TP-0903 treatment preferentially gave rise to subpopulations 

with elevated CD133, a self-renewal regulator for metastasis and therapeutic resistance (Fig. 

4C) (37,41). Moreover, higher levels of CD133 relative to other markers were frequently 

observed in Category IV subpopulations and aggressive stages of lung cancer, suggesting their 

innate resistance to TP-0903 and other treatments (Fig. 4B and 4D). Generally speaking, high 

expression levels of cancer stemness markers were observed in advanced stage patients. In 

only two cases, early-stage lung tumors of Pt 007 and Pt 016 with mixed histologies 

demonstrated high stemness markers, suggesting a more aggressive phenotype 

(Supplementary Table S1 and Fig 4D). 

Increased CD133 expression is a classic signature marker of EMT (37,41). For this reason, 

we conducted CyTOF analysis of 10 EMT markers (SNAIL, TWIST, Vimentin, N-cadherin, 

Fibronectin, β-catenin, ZO2, PECAM, EPCAM, and CK8/18) across 27 cell subpopulations. The 

levels of mesenchymal markers corresponded with high AXL levels while epithelial markers 

were more dominant in Categories II and IV (Fig. 5A). Based on epithelial (E) and mesenchymal 

(M) index values, Category IV subpopulations displayed the highest EMT hybrid states (Fig. 

5B). Furthermore, TP-0903 treatment engendered higher E and M index values of these 

subpopulations, allowing greater mesenchymal/epithelial plasticity for metastasis (Fig. 5C) (11). 

To confirm this hybrid state, we applied AFM to probe biophysical properties - stiffness, 

deformation, and adhesion in TP-0903-treated and untreated cells (Fig. 5D-F). Stiffness is 

Research. 
on January 28, 2020. © 2020 American Association for Cancercancerres.aacrjournals.org Downloaded from 

Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 
Author Manuscript Published OnlineFirst on January 28, 2020; DOI: 10.1158/0008-5472.CAN-19-3183 

http://cancerres.aacrjournals.org/


 15 

expressed in units of pressure as the Young’s modulus, whereas deformation is presented in 

units of length and assesses the depth of cell indentation at a selected point by a preset force 

(35,42,43). Adhesion is measured in units of force (Newtons) and quantifies a cell’s ability to 

stick to another cell or to base membranes (34,44). Overall, TP-0903-treated cells became more 

epithelial-like with increased stiffness and adhesion and attenuated deformity, relative to 

untreated cells (Fig. 5F). A549 cells responded to TP-0903 treatment with a 3-fold increase in 

stiffness, decreased deformation (25%) and increased adhesion (50%). The response of H2009 

cells was moderate with only 61% increase of stiffness and 35% increase of adhesion noted 

(Fig. 5F). In general, early-stage tumors demonstrated lower E and M index values while 

advanced-stage tumors displayed higher E and M index values (Fig. 5G and 5H). However, 

tumors from early-stage patients, Pt 007 and Pt 016, showed high E and M index values, 

suggesting more aggressive phenotypes (Fig. 5G and 5H). Our finding implicates that the 

acquisition of a hybrid EMT phenotype allows invasive cells to simultaneously retain epithelial 

and mesenchymal traits for distant metastasis (45). 

 

Diverse progression and regression patterns in lung tumors 

Pseudotime analysis was performed to model cellular transition states among the four 

categories. Developmental trajectories of the 11 lung tumors were reminiscent of linear or 

punctuated models of evolution (Fig. 6 and Supplementary Table S1) (46). Lung tumors from six 

patients displayed a conventional trajectory, transitioning seamlessly from Category I to IV. 

Tumor specimen of Pt 008, for example, had early Stage IB invasive adenocarcinoma with 

papillary features and cell fate shifted from Category I to II, displaying the least invasive 

phenotype (Fig. 6A). Pt 010, on the other hand, transitioned from Category I to IV suggesting a 

more invasive phenotype. Interestingly, this patient had Stage IA moderately differentiated 

adenocarcinoma with additional micropapillary and acinar features on histopathologic 
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examination.  These features are often associated with stromal invasion and poorer outcomes 

than invasive adenocarcinoma without these features (Fig. 6A) (47). Analogously, Pt 014 had 

early Stage IA invasive adenocarcinoma (acinar predominant) with cell fates transitioning 

abruptly from Category II to IV (omitting Category I) (Fig. 6A). Both Pt 002 (metastatic 

paratracheal lymph node) and Pt 009 (moderate differentiated carcinoma with a mixed histology 

of lepidic, solid and glandular patterns) had aggressive Stage IIIA adenocarcinoma with highest 

metastatic potential and tumor-cell fates leading with Category II and culminating to Category IV 

subpopulations (Fig. 6A). Tumor subpopulations from these patients likely came from a common 

origin and progressively diverged into more advanced categories. 

Pt 004 and 016 revealed tumor cell fates that transitioned to high risk Category IV, but unlike 

the others, the intermediate stages reverted from IIIII then jumped to IV (Fig. 6A). This 

dichotomy can be partially explained by their distinct histopathologic findings. Pt 004 had 

moderately differentiated Stage IIIB adenosquamous lung cancer; the two synchronous tumor 

components might explain the abrupt transition from low to high metastatic potential. Even more 

striking was the fact that this patient had a separate tumor nodule of invasive carcinoma in the 

same right upper lung lobe, indicating a higher metastatic potential than other patients in this 

category. By contrast, Pt 016 had early Stage IB invasive adenocarcinoma with a papillary 

predominant growth pattern and focal stromal invasion.  This less aggressive histologic pattern 

may account for this instability of abrupt transition from Category II to IV through III/II 

intermediate stage. 

The pseudotime analysis of the remaining lung tumors lacked intermediate stages and cell 

fates evolved nonlinearly in short bursts. Pt 007 had Stage IB adenocarcinoma with acinar 

predominant histology, which could explain the punctuated tumor model (Fig. 6B). Acinar 

adenocarcinomas have intermediate prognosis and notoriously display stromal invasion 

(bundles of broken elastic fibers) with desmoplastic tumor stroma and asymmetrical glands (47). 

Pt 012 had early Stage IA lung adenocarcinoma with acinar predominance and micropapillary 
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features that may explain the branched tumor patterns (high-risk Category IIIIV and Category 

IIIV progression) (Fig. 6B). Micropapillary-predominant adenocarcinoma has the poorest 

survival outcomes compared with acinar-predominant tumor. This tumor type is often associated 

with advanced lymph node staging (47). Lymph node involvement by tumor could not be 

assessed for Pt 012 who underwent a limited wedge resection. 

The punctuated regression models with tumor subpopulations transitioning from a high-risk 

to lower-risk category were unique to Pt 006, 009 and 017 (Fig. 6C). Pt 006 presented with 

Stage IIB poorly differentiated adenocarcinoma with subpopulations assigned high-risk 

Category III/IV (Fig. 6C) and CTCs belonging to Category IV (Fig. 6C). Strikingly, pseudotime 

analysis of tumor specimen of Pt 006 exposed diverse clonal lineages: 1) tumor progression 

from Category III to IV; 2) tumor regression from category III to II; and 3) stasis (Category III) 

(Fig. 6C). Pt 009 had advanced stage IIIB moderately differentiated, invasive adenocarcinoma 

with a 2.1 cm tumor with mixed histology (lepidic, solid and glandular patterns), pleural and 

lymphovascular invasion and lymph node involvement (3 out of 13). Lepidic-predominant 

adenocarcinomas invade with a predominant lepidic growth pattern and have a favorable 

prognosis, while solid predominant adenocarcinoma presents with tumor necrosis, invasion of 

lymphovascular spaces and visceral pleura, and have a poor prognosis. Tumor specimen 009 

revealed multiple clonal lineages indicative of tumor progression (Category IIIIIIV and IIIIV) 

and tumor regression (Category IIIII), which can be explained by advanced disease stage and 

mixed histology (Fig. 6C). Pt 017 presented with Stage IV invasive adenocarcinoma (well to 

moderately differentiated). Tumor specimen of this patient originated from pleural metastasis, 

and pseudotime analysis represents a punctuated model consisting of spontaneous regression 

with tumor cell subpopulations transitioning to lower risk category (Category III) and higher risk 

categories (Category IIIV) (Fig. 6C). Fitting into this punctuated model, cell subpopulations for 

all these tumors might be pre-programmed in earlier stage to become metastatic or resistant to 

therapy (41). 
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Optimized targeting of AXL and JAK1 recapitulated in patient-derived organoids 

PDOs are three-dimensional cultures of cancer and related cells that can be established 

from tumor specimens for drug testing (Fig. 6D-F). Short-term treatments of PDOs were 

pursued to examine the overall effect of AXL and/or JAK inhibitors on tumor cell subpopulations 

of Category I through IV. We hypothesized that tumors expressing moderate to high AXL and 

JAK-related proteins (Category III and IV) are most responsive to these therapies, whereas 

tumors belonging to Category I (lowest AXL and JAK1-STAT3 expression) may not respond. 

Based on the aforementioned in vitro testing (see Fig. 2D), the doses of TP-0903 (20 nmol/L) 

and ruxolitinib (15 mol/L) were chosen for PDO testing. In a short-term drug treatment design 

(Fig. 6G), PDOs of Pt 008 and 010 with Category I/II tumor cell subpopulations did not respond 

robustly to either TP-0903 (20 nmol/L) or ruxolitinib (15 mol/L) (Fig. 6G; Supplementary Fig. S8 

and S10). In contrast, PDO of Pt 016 had 59% tumor subpopulations that belonged to Category 

IV (high expression of AXL and JAK1-STAT3 signaling components) responded robustly to 15 

mol/L ruxolitinib alone, but the synergy with 20 nmol/L TP-0903 was less apparent at 72 hr 

after combined treatment (Fig. 6G; Supplementary Fig. S13). PDOs of Pt 014 and 017 belonged 

to Category II (moderate levels of AXL and JAK1-STAT3 expression) and each responded to 

TP-0903 or ruxolitinib treatment alone with 10-20% reduction in cell viability (Fig. 6G; 

Supplementary Fig. S12 and S14). These preliminary results suggest that CyTOF profiling of 

lung tumors can provide predictive information for optimal testing of anti-AXL and -JAK1 agents 

in corresponding organoids, which will support the personalization of treatment for lung cancer 

patients. 

 

Discussion 
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Small molecule inhibitors of AXL, like TP-0903, have entered clinical trials (48). However, 

the successful development of these drugs will depend on predictive markers for patient 

stratification. In this regard, CyTOF offers valuable knowledge of single-cell alterations of 

intracellular and surface markers in response to drug treatments, providing a powerful tool for 

rational design of AXL targeting strategies (49). To identify potential predictive markers, we 

started with the transcriptomic analysis of lung cancer cells treated with AXL inhibitor (TP-0903 

which revealed AXL-TGF- crosstalk, as well as upregulation of JAK1-STAT3 signaling as a 

bypass mechanism. With this in mind, we designed a CyTOF panel of 21 markers for AXL-

related pathways, cancer stemness and EMT markers as a drug targeting strategy. This single-

cell proteomic analysis revealed that tumor subpopulations with increasing AXL activities also 

intrinsically express higher levels of TGF- and JAK1 signaling components, suggesting 

progression towards higher grade malignancies with enhanced cancer stemness and hybrid 

EMT features (45). TP-0903 treatment induced hybrid EMT and changed the nanomechanical 

properties of LAC cells. It is well-established that AFM can characterize the biophysical 

properties of cancer cells and corresponds to tumor cell invasion and EMT progression 

(50,51). Both pharmacologic and genetic targeting of AXL  increased stiffness of lung cancer 

cells. Accordingly, it was found that stress fiber formation was stimulated following AXL 

knockdown (52). This finding was further supported by the presence of Category IV 

subpopulations with the highest AXL/TGF-/JAK1 expressions. As expected, we found that 

CTCs of Pt 006 analyzed by CyTOF belonged solely to Category IV, representing tumor cells 

with the highest metastatic potential. The concordant upregulation of AXL, TGF- and JAK1 

suggests that these redundant networks promote tumor growth and metastatic spread. 

Pseudotime analysis was conducted to predict tumor-cell fates based on subpopulation 

categorization. The three trajectories identified from this analysis resemble linear, punctuate and 

regression models (46). The assimilation of pseudotime results with patients’ histomorphologic 
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patterns provides additional prognostic information based on the assumption that functional 

phenotypes reflect an underlying genotype. For example, punctate models seem to correlate 

with advanced tumor stages and/or high-risk histopathologic features (e.g., micropapillary, 

papillary, and acinar histologies). Another interesting discovery with pseudotime is tumor 

regression where tumor subpopulations could revert to low-risk phenotype. Spontaneous tumor 

regression occurs in primary tumors and metastatic niches and have been attributed to 

apoptosis, immunity and  tumor microenvironment conditions (53). Tumor specimen 017, for 

example, originated from pleural metastasis and demonstrated a punctuated regression pattern 

with cell fate transitioning from Category II/IIII. Future analysis that links CyTOF to 

histopathology in a larger patient cohort may prove useful for adjuvant treatment strategies with 

curative intent. 

The inter-patient variability and tumor subpopulations traversing all four categories 

underscore the need for tailored and personalized treatments based on a tumor’s predominant 

phenotype. Ex vivo drug testing of PDOs recapitulate tumor growth and can more accurately 

predict individual treatment responses to anti-AXL and -JAK combinations compared to other 

preclinical models (30). While patients with Category I tumor subpopulations might not benefit 

from these targeted agents due to low AXL and JAK activities, PDOs belonging to advanced 

categories exhibited sensitivity to single-agent inhibition, particularly with ruxolitinib (i.e., JAK 

inhibitor). Synergy of TP-0903 and ruxolitinib combination was not apparent in the present 

study. One explanation is that JAK inhibition can attenuate AXL signaling, and further 

exploration of crosstalk between AXL and JAK1 signaling is warranted. Another explanation 

could be the shorter drug exposure time (i.e., 72 hr) used to treat organoids. Most targeted 

therapies are given at lower doses when used in combination, which significantly reduces 

adverse events (54). For this reason, lower doses of ruxolitinib should be pursued in organoids, 

which may prove to be synergistic when combined with TP-0903. As we used organoids derived 

from ‘‘curative-intent’’ surgical resection samples without parallel patient treatment, future 
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prospective studies will be required to establish definitive correlations between organoid and 

patient. Additional profiling of tumor ecosystem will be our next step in determining how non-

tumor cells (e.g., immune, stromal, and endothelial cells) support expansions of residual tumor 

subpopulations after drug treatments. One major advantage to combining single-cell profiling of 

tumors and drug testing of corresponding organoids is that they can be realistically performed 

within a one-week time frame that is clinically relevant for making treatment decisions for cancer 

patients. 

The CyTOF panel used in this study may prove useful in identifying lung cancer patients 

who should be considered for investigational agents, like TP-0903 or ruxolitinib. Similarly, the 

subpopulation categorization and trajectory modeling may predict which patients are at higher 

risk for tumor recurrence following their lung tumor resections. The proposed protein markers 

would be readily available for validation and can be implemented in clinical trials using liquid 

and/or tumor biopsies. If validated, these or similar markers will serve as surrogates for patient 

classification and can be used for treatment decisions.  
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Figure Legends 

Figure 1. 

Cytometry by mass-of-flight (CyTOF) profiling of oncogenic signaling, cancer stemness, and 

epithelial-mesenchymal transition (EMT) in lung tumors and cell lines. A, A flow chart was 

drawn to illustrate the CyTOF and organoid processing. B, Tumor epithelial cells were identified 

based on CD45-/CK8+/18+/EpCAM+ profiles. C, t-distributed stochastic neighbor embedding (t-

SNE) scatter plots stratified 27 subpopulations derived from different lung tumors and cell lines. 

D-G, t-SNE scatter plots were utilized to display expression levels of oncogenic signaling 

components and markers for cancer stemness and epithelial-mesenchymal transition (EMT). H, 

t-SNE scatter plot of subpopulations in a patient (Pt 002). See profiles of other patients in 

Supplementary Fig S5-S14. I-L, t-SNE scatter plots showed expression levels of oncogenic 

signaling components, markers for cancer stemness and EMT in Pt 002. 

 

Figure 2. 

Single-cell profiling was performed using lung cancer cells treated with TP-0903 by cytometry by 

mass-of-flight (CyTOF).  A, t-distributed stochastic neighbor embedding (t-SNE) scatter plots of 

subpopulations in A549 and H2009 cells treated with and without 40 nmol/L TP-0903. B-C, t-

SNE scatter plots displaying expression levels of oncogenic signaling components in TP-0903-

treated and treated lung cancer cells. D, The bar graph of cell viability at 72 hr in TP-0903 

and/or ruxiolitinib treated A549 and H2009 cells (Duncan multiple range test; ***, P < 0.001). 

See the detailed description of treatment protocols in the Materials and Methods section.  

 

Figure 3. 

Four categories among different subpopulations of lung cancer cell lines and primary tumors 

ordered by AXL expression levels. A, Subpopulations were aligned according to increasing AXL 
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levels (violin plots). Expression heat maps of JAK1, pSTAT3, SMAD2, SAMD4 and TGFBR2 of 

each subpopulation were arranged accordingly. B, Sizes of each subpopulation in cell lines and 

lung tumors were indicated. C, Violin plots were employed to illustrate the six signaling 

components in cell lines and lung tumors. D, Percentage of four categories in patients and cell 

lines. 

 

Figure 4. 

Features of cancer stemness in cancer cell lines and lung tumors. A, Expression heat maps of 

OCT3/4, NANOG, CD133, CD44 and ALDH1A1 of each subpopulation were aligned at an 

increasing AXL level in individual subpopulations. B, Violin plots were employed to highlight the 

five cancer stemness markers in four categories of cell lines and lung tumors. C, Expression of 

five cancer stemness markers in cell lines before and after 40 nmol/L TP-0903 treatment was 

compared in violin plots. D, Expression of five cancer stemness markers in early- and 

advanced- stage patients shown as violin plots. 

 

Figure 5. 

Profiles of epithelial-mesenchymal transition (EMT) in lung cancer cell lines and lung tumors. A, 

Expression heat maps of mesenchymal (E) and epithelial (M) markers of each subpopulation 

were aligned in order of increasing AXL levels accordingly. B-C, E and M index values in each 

subpopulation category of A549 and H2009 cells treated with and without TP-0903 were 

compared by scatter plots. D, A bright field image of H2009 cells probed with atomic force 

microscopy (AFM) is shown. A black triangle represents an AFM cantilever equipped with a 

scanning tip perpendicularly positioned (red dot). The 3D rendering of an AFM probe showed 

probe tip location. E, A schematic representation of AFM image formation is illustrated. F, 

Biophysical profiles (i.e., stiffness, deformation, and adhesion) were compared in A549 and 

H2009 cells with and without 40 nmol/L TP-0903 treatment. Each symbol represents a single-
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cell data point. Long vertical lines represent the mean and short vertical lines represent ±SD. 

(Student’s T-test; *, P < 0.05; **, P < 0.01; ***, P < 0.001) G, Scatter plots were plotted for E and 

M index values in each subpopulation category among patients’ cells. H, Percentages of 

different E/M groups were compared among early- and advanced-stage patients. 

 

Figure 6. 

Pseudotime analysis and organoid testing of lung tumors. For patients’ clinicopathological 

information, see Supplementary Table S1. A, Diffusion maps of linear model.  B, Diffusion maps 

of punctuated model. C, Diffusion maps of punctuated regression model. D, Flow chart of a 

short-term drug treatment process in patient-derived organoids (PDOs). E, Bright view images 

of organoid morphology (Scale bar = 500 m). F, Examples of Immunofluorescence images of 

DAPI (blue), CD45 (red), pan-cytokeratin (green), and EpCAM (purple) in PDOs (Scale bar = 40 

m). G, Bar graph of cell viability at 72 hr in 20 nmol/L TP-0903 and/or 15 mol/L ruxolitinib 

treated PDOs (Duncan multiple range test; *, P < 0.05; **, P < 0.01; ***, P < 0.001). Doses were 

selected based on in vitro testing of lung cancer cell lines (see Fig. 2D). 
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