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ABSTRACT
◥

Mutation of the oncogene BRAF is among the most common
genetic alterations in melanoma. BRAF inhibitors alone or in
combination with MEK inhibitors fail to eradicate the tumor in
most patients due to combinations of intrinsic or acquired resis-
tance. Therefore, novel strategies are needed to improve the ther-
apeutic efficacy of BRAF inhibition. We demonstrated that dina-
ciclib has potent antimelanoma effects by inducing BAK-dependent
apoptosis through MCL1 reduction. Contrary to dinaciclib, the
inhibitors of BRAF/MEK/CDK4/6 induced apoptosis dominantly

through a BAX-dependent mechanism. Although the combination
of BRAF andMEK inhibitors did not exhibit additive antimelanoma
effects, their combination with dinaciclib synergistically inhibited
melanoma growth both in vitro and in vivo. Collectively, our present
findings suggest dinaciclib to be an effective complementary drug of
BAX-dependent antimelanoma drugs by targeting BAK-mediated
apoptosis, and other such rational drug combinations can be
determined by identifying complementary drugs activating either
BAK or BAX.

Introduction
Cutaneous melanoma is one of the leading causes of cancer death

with an increasing incidence worldwide (1). BRAF and NRAS are
oncogenes frequently mutated in melanoma (2). Successful therapeu-
tic advancements in the past decades have been achieved for mono-
therapies, including BRAF inhibitors (3); however, the benefits of
BRAF inhibitor monotherapy are only temporary and almost all
patients eventually relapse (3–5). Several acquired resistance mechan-
isms toBRAF inhibitors have been identified, someofwhich are related
to reactivation of the downstream molecules MEK1/2. Although the
combination therapy of a BRAF inhibitor with a MEK inhibitor was
recently approved due to delayed acquired resistance (6), improve-
ments are needed to combat intrinsic resistance to BRAF inhibition.
Thus, additional therapeutic strategies are required for the optimal
clinical effects of targeted therapy to be observed in patients with
melanoma.

Apoptosis through the mitochondrial pathway is induced by mul-
tiple molecular-targeted drugs or anticancer drugs, which are
regulated by BCL-2 family members (7). The activation and oligo-
merization of effectors of the BCL-2 family, BAX and BAK, play
essential roles in this apoptotic pathway, and can be inhibited by the
binding of antiapoptotic BCL2 family members (BCL2, BCL-w, BCL-
xL, MCL1, and BCL2A1) with some selectivity; all five members bind
to BAX, whereas BCL-xL, MCL1, and BCL2A1 bind to BAK (8). BAX/

BAK inhibition by antiapoptotic BCL-2 family members is associated
with intrinsic resistance to some molecular-targeted drugs or anti-
cancer drugs in different malignancies. For example, inhibitors of the
BCL2 family, such as obatoclax, increase the apoptotic rate in com-
bination with some molecular-targeted drugs, including BRAF inhi-
bitors (9). Thus, effective activation of both BAX and BAK may
provide opportunities to overcome intrinsic resistance to drugs,
resulting in improved outcomes for poor-prognosis patients with
cancer.

The cyclin-dependent kinase (CDK) family is known to regulate
cell-cycle progression or gene transcription (10). Although some
CDK4/6 inhibitors, including palbociclib, have been approved by the
FDA for some breast cancers, there are additional opportunities to
target distinct CDKs such as CDK2 or CDK9 (11). CDK2was reported
to play an important role in melanoma growth and proliferation, but
not in other cancers (12). On the other hand, CDK9was demonstrated
to regulate the transcription of MCL1, one of the important anti-
apoptotic BCL2 family members, in several cancers (13–15). In
addition to cytostatic effects through cell-cycle arrest by some CDK
inhibitors, cytotoxic effects have also been observed with these
agents (16).

In this study, we found that dinaciclib functions as BAK-dependent
anticancer drugs in human melanoma cells. In addition to cell-cycle
arrest in melanoma cells, dinaciclib also activated the mitochondrial
apoptotic pathway through MCL1 suppression. We further clarified
that growth suppression with a BRAF inhibitor, vemurafenib, is
dependent upon BAX in BRAF mutant human melanoma cells. MEK
or CDK4/6 inhibitors also induced apoptosis in melanoma cells
dominantly through a BAX-dependent mechanism. Furthermore, the
combination of dinaciclib with these BAX-dependent inhibitors syn-
ergistically inhibited melanoma growth both in vitro and in vivo.

Materials and Methods
Reagents

Dinaciclib was purchased from MedChem Express, and CDK2/9
inhibitor (iCDK2/9; CAS No. 507487-89-0), Purvalanol A, and
SNS032 were purchased from Merck Millipore. Atuveciclib and
LDC000067 were purchased from Selleck. The BRAF V600E inhibitor
vemurafenib and MEK inhibitor trametinib were purchased from LC
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Laboratories. For the in vitro experiments, all of the chemical inhi-
bitors were formulated inDMSOand the final concentration ofDMSO
was <0.1%.

Plasmid preparation and lentivirus production
HA/MCL1 sequences from pcDNA3.1-HA/MCL1 (17) and E2-

Crimson sequences from pCMV-E2 Crimson (Takara Bio) were
subcloned into pENTR1A, and inserted into pLenti CMV Hygro
DEST (w117-1), which was a gift from Dr. Campeau E. and Dr.
Kaufman P. (Addgene plasmid no. 17454; ref. 18). Lentivirus particles
were produced as described previously (9).

Cell cultures
Human melanoma cell lines A2058 and MeWo were from ATCC.

A2058, M14, UACC257, UACC62, SK-MEL-2, andMeWomelanoma
cell lines were cultured in RPMI1640. SK-MEL-28 melanoma cell line
was cultured in DMEM. All of the media were supplemented with 2
mmol/L L-glutamine, 10%FBS, 100U/mL of penicillin, and 100mg/mL
of streptomycin. The cells were maintained at 37�C in a humidified
atmosphere of 5%CO2. A2058/BAX

�/� cells andA2058/BAK�/� cells
were established using CRISPR-Cas9 as described previously (19). To
establish A2058 cells stably expressing E2-Crimson or HA/MCL1,
A2058 cells were infected with lentivirus particles and selected in
400 mg/mL of hygromycin for 2 weeks.

Cell growth assay
Humanmelanoma cells were seeded on 96-well plates (5� 103 cells/

well). After overnight culture, cells were treatedwith dinaciclib, CDK2/
9 inhibitor, palbociclib, vemurafenib, or trametinib for 72 hours, and
subjected to cell growth assays using the CellTiter-Glo 2.0 Lumines-
cent Cell Viability Assay (Promega).

EdU incorporation assay
The EdU incorporation assay was performed using a Click-iT Plus

EdU Alexa Fluor 647 Flow Cytometry Assay Kit (Thermo Fisher
Scientific), according to the manufacturer's instructions. Briefly,
human melanoma cells were treated with 50 nmol/L dinaciclib for
12 hours. After treatment with 25 mmol/L EdU for 1 hour, cells were
fixed and permeabilized, and stained by picolyl azide coupled to Alexa
Fluor 647 dye to detect EdU. Then, cells were resuspended in 200 mL of
PBS containing propidium iodide (50 mg/mL) and RNase A (100 mg/
mL), and immediately analyzed by flow cytometry on the FACSCanto
II (BDBiosciences). Data were analyzed by FlowJo software (TreeStar).

Western blotting
Whole cell lysates were prepared as described previously (9). Pri-

mary antibodies used were BAX (D2E11; #5023), BAK (D4E4;
#12105), BCL2 (D55G8; #4223), BCL-xL (54H6; #2746), A1/Bfl-1
(#4647), BCL-w (31H4; #2746), MCL1 (D35A5; #5453), and PARP
(#9542) fromCell Signaling Technology, HA fromRoche, anda-tubu-
lin (T9026) from Sigma-Aldrich. The band intensities were measured
by ImageJ and normalized to that of each control lane.

Caspase-3/-7 activity assay
To measure the activity of caspase-3 and -7, the Caspase-Glo 3/7

assay system (Promega) was applied according to the manufacturer's
instructions. Briefly, cells (5 � 103 cells/well in 96-well plates) were
treated with each drug at the indicated doses for 24 hours andCaspase-
Glo 3/7 reagent was then added. After a 30-minute incubation,
caspase-3 and -7 activity was measured using the GloMax-Multi
Detection system (Promega).

Annexin V/propidium iodide staining analysis
Apoptotic cells were determined using the FITC Annexin V apo-

ptosis Detection Kit (BD Sciences) according to the manufacturer's
instructions. Briefly, humanmelanoma cells were harvested after drug
treatment for 24 hours, washed with PBS, and then resuspended in
Annexin V-binding buffer containing FITC-conjugated Annexin-V
and propidium iodide. Cells were incubated for 15 minutes at room
temperature in the dark and immediately analyzed by flow cytometry
on the FACSCanto II. Data were analyzed by FlowJo software.

RNA interference
siRNAs were purchased from Thermo Fisher Scientific. For knock-

down of BAX or BAK, 12.5 nmol/L siRNAs for BAX (s1888, s1889),
siRNAs for BAK (s1880, s1881), siRNAs for CDK2 (s204, s205),
siRNAs for CDK9 (s2834, s2835), siRNAs for BRAF (s2080, s2081),
or Silencer Select Negative Control #1 siRNA were reverse transfected
to human melanoma cell lines by Lipofectamine/RNAiMax (Thermo
Fisher Scientific). The cells were then treated with each drug after
48 hours transfection, and subjected to cell growth assays. For
Western blotting, whole cell lysates were prepared after 96 hours
transfection.

Real-time RT-PCR
Total RNA was prepared using the RNeasy Plus Mini Kit (Qiagen)

and subjected to real-time PCR on an ABI Prism 7300 sequence
detection system (Life Technologies). The expression levels ofMCL1,
BCL2L1 (BCL-xL), BCL2L2 (BCL-w), BCL2, and BCL2A1 mRNAs
were normalized to that of b-actin mRNA. The primers used were: 50-
TCG TAA GGA CAA AAC GGG AC-30 (sense) and 50-CAT TCC
TGA TGC CAC CTT CT-30 (antisense) for MCL1 mRNA; 50-CTG
CTGCATTGTTCCCATAG-30 (sense) and 50-TTCAGTGACCTG
ACA TCC CA-30 (antisense) for BCL2L1mRNA; 50-TCA ACA AGG
AGA TGG AAC CAC-30 (sense) and 50-ATA GAG CTG TGA ACT
CCG CC-30 (antisense) for BCL2L2 mRNA; 50-CTG AGT ACC TGA
ACCGGCA-30 (sense) and 50-GAGAAA TCA AAC AGAGGC CG-
30 (antisense) for BCL2 mRNA; 50-CCC GGA TGT GGA TAC CTA
TAA GGA GA-30 (sense) and 50-GTC ATC CAG CCA GAT TTA
GGT TCA-30 (antisense) for BCL2A1mRNA; and 50-GCA CAGAGC
CTC GCC TT-30 (sense) and 50-GTT GTC GAC GAC GAG CG-30

(antisense) for b-actin mRNA.

In vivo xenograft model
Female 6-week-old C.B-17/lcrHsd-Prkdcscid mice were purchased

from Japan SLC. All experiments were approved and performed
according to the guidelines of the Care andUse of Laboratory Animals
of the University of Toyama. A2058 cells were inoculated subcutane-
ously (5 � 106 cells/ 100 mL PBS/mouse) into the mouse flank.
Vemurafenib was dissolved in DMSO, followed by PBS, which was
then injected daily intraperitoneally into mice at a dose of 50 mg/kg.
Dinaciclib was dissolved in 20% hydroxypropyl-b-cyclodextrin, and
then injected intraperitoneally into mice at a dose of 20 mg/kg every
3 days. The tumor volumewasmeasured every 3 days starting fromday
3. All the mice were sacrificed at day 23. The primary tumor was
measured using a Vernier caliper square along the longer (a) and
shorter (b) axis, and the tumor volume was calculated using the
following formula: tumor volume (mm3) ¼ ab2/2.

Statistical analysis
Statistical significance was calculated using GraphPad Prism soft-

ware (GraphPad Software, Inc.). More than three means were com-
posed using two- or one-way ANOVAwith the Bonferroni correction,
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and two means were composed using the unpaired Student t test.
P < 0.01 was considered statistically significant.

Results
Dinaciclib induced melanoma cell apoptosis

Considering the importance of CDK2 (12) and CDK9 (20–22) in
many types of cancer, we first investigated the antitumor effects of two
potent CDK2/9 inhibitors, dinaciclib (23) (Fig. 1A) and iCDK2/9
(compound #32 in ref. 24; Supplementary Fig. S1A), in a panel of
human melanoma cell lines carrying activating mutations of BRAF
V600E, NRAS Q61R, or BRAF/NRAS-wild type. Although dinaciclib
is a known inhibitor of CDK1/2/5/9, iCDK2/9 has strong selectivity to
CDK2/9. In all melanoma cell lines tested, both CDK inhibitors
significantly suppressed melanoma cell growth in a dose-dependent
manner. Consistent with previous reports (12, 24), dinaciclib induced
cell-cycle arrest at theG1 phase in allmelanoma cell lines and also at the
G2 phase in some melanoma cells (Fig. 1B; Supplementary Fig. S1B).
In addition to the induction of cell-cycle arrest, annexin V-positive
apoptotic cells were increased by dinaciclib treatment in melanoma
cells (Fig. 1C), suggesting that dinaciclib suppressesmelanoma growth
through cell-cycle arrest and the induction of apoptosis.

Dinaciclib induced BAK-dependent melanoma cell apoptosis
As BAX and BAK are essential regulators of cancer cell apoptosis in

response to some anticancer drugs, including MEK inhibitors or
cisplatin (25, 26), we next examined the involvement of BAX- or
BAK-dependent pathway(s) in the induction of apoptosis upon
CDK2/9 inhibitor treatment of A2058 cells by knocking-out BAX
(A2058/BAX�/�) or BAK (A2058/BAK�/�; ref. 19). As shown
in Fig. 2A, four potent CDK2/9 inhibitors, dinaciclib, iCDK2/
9 (27), SNS032 (CDK2/5/7/9 inhibitor; ref. 28), and LDC000067
(CDK2/9 inhibitor; ref. 29) had reduced inhibitory effects on the
growth of A2058/BAK�/� cells compared with parental A2058 cells or
A2058/BAX�/� cells. Furthermore, both the CDK2 inhibitor, purva-
lanol A (30), and CDK9 inhibitor, atuveciclib (31), showed BAK-
dependent growth inhibition (Supplementary Fig. S1C). In contrast to
dinaciclib and these potent CDK2/9 inhibitors, the CDK4/6 inhibitor,
palbociclib, exhibited lower inhibitory effects on the growth of A2058/
BAX�/� cells than on parental A2058 cells or A2058/BAK�/� cells
(Fig. 2A). These results suggest that dinaciclib and these potent CDK2/
9 inhibitors inhibit melanoma growth mainly through a BAK-
dependent mechanism. Similar to the results in A2058/BAK�/� cells,
both dinaciclib and iCDK2/9 had reduced inhibitory effect in the
growth of three other melanoma cell lines (A2058, M14, SK-MEL-28,
and MeWo) treated with siBAK, but not with siBAX (Fig. 2B;
Supplementary Fig. S1D), although the growth inhibition by dinaciclib
and iCDK2/9 was weakly rescued by BAX knockdown in SK-MEL-2.
Consistent with the melanoma cell growth effects, we further dem-
onstrated that both dinaciclib and iCDK2/9 caused less PARP cleavage
and less caspase-3/7 activation measured using luminogenic caspase-
3/-7 substrate or reduced annexin V-positive apoptotic cells in A2058
BAK�/� cells, respectively, than parental A2058 cells and A2058/
BAX�/� cells (Fig. 2C–E; Supplementary Figs. S1E–S1G), suggesting
that dinaciclib and iCDK2/9 induce melanoma cell apoptosis mainly
through a BAK-dependent mechanism.

To directly examine the importance of CDK2 and/or CDK9 in
melanoma cell growth via a BAK-dependent mechanism, we used
A2058 cells treated with siRNAs against CDK2 or CDK9 instead of
dinaciclib. Although knockdown of both CDK2 andCDK9 suppressed
the growth of parental A2058 andA2058/BAX�/� cells, it did not affect

the growth of A2058/BAK�/� cells (Supplementary Fig. S1H). More-
over, we observed the activation of BAK upon dinaciclib treatment in
A2058 cells using a specific antibody detecting its conformational
change on the mitochondrial membrane (Fig. 2F). Therefore, the
inhibition of CDK2 and CDK9 by dinaciclib may induce BAK-
dependent melanoma cell apoptosis.

Requirement of MCL1 for BAK-dependent melanoma cell
apoptosis induced by dinaciclib

To assess the requirement of anti-apoptotic BCL-2 family members
in BAK-dependent melanoma cell apoptosis induced by dinaciclib,
we examined the expression of antiapoptotic BCL-2 family members
(MCL1, BCL-xL, BCL-w, BCL2, and BCL2A1). As shown in Fig. 3A,
both protein and mRNA expression of MCL1 were rapidly and
strongly reduced by dinaciclib treatment, although that of some other
BCL2 family members was also weakly reduced. The stronger reduc-
tion of MCL1 protein than of other BCL2 family members was also
observed in A2058 cells treated with siCDK2, siCDK9, or their
combination (Supplementary Fig. S1I). To clarify the functional
importance of MCL1 in dinaciclib-induced apoptosis of melanoma
cells, we establishedA2058 cells overexpressingMCL1 or E2-Crimson,
which is a fluorescent protein, as a negative control, under the control
of CMV promoter (A2058/MCL1 or A2058/E2-Crimson, respective-
ly). A2058/MCL1 cells showed less response to dinaciclib as seen in the
reduction of cell viability along with the sustained MCL1 expression,
and impaired cleavage of PARP (Fig. 3C) compared with control
A2058/E2-Crimson cells (Fig. 3B). These results indicate that dina-
ciclib induces BAK-dependent melanoma cell apoptosis through the
suppression of MCL1 mRNA.

Inhibitors of BRAF and MEK induce BAX-dependent melanoma
cell apoptosis

BRAF and MEK inhibitors are widely used to treat melanoma as
monotherapy or in combination (6). Further, it is known that BRAF or
MEK inhibition transiently induces MCL1 expression (32), leading to
modest degrees of apoptosis of melanoma cells in vitro (33–36).
Indeed, A2058/BAX�/� cells showed less sensitivity to vemurafenib
at a lower dose of treatment (Fig. 4A) and there was a dominant role of
BAX at a high-dose of vemurafenib treatment for induction of
apoptosis in A2058/BAX�/� cells (Fig. 4B). Similar to vemurafenib
treatment, we observed a dominant role of BAX in siBRAF-mediated
growth suppression ofA2058melanoma cells (Supplementary Fig. S2).
In addition to vemurafenib, a MEK inhibitor (trametinib) also sup-
pressed the growth of A2058 (BRAFV600E-mutant) and SK-MEL-2
(NRASQ61R-mutant) cells mainly in a BAX-dependent manner
(Fig. 4C). These results demonstrate that inhibition of BRAF or MEK
induces BAX-dependent melanoma cell apoptosis. Alternatively,
BAK-dependent apoptosis may not be fully induced by BRAF or
MEK inhibition.

Rational combination therapy of melanoma with dinaciclib
To test rational combination approaches exploiting BAX- andBAK-

induced apoptosis for developing an effective treatment against mel-
anoma, we examined the antitumor effect of dinaciclib in combination
with three BAX-dependent drugs (vemurafenib, trametinib, and pal-
bociclib) in vitro. Although modest inhibition of cell growth was
observed by single treatment with dinaciclib or vemurafenib, a
synergistic antitumor effect of dinaciclib with vemurafenib in
BRAFV600E-mutated melanoma cell lines (A2058 and M14) was
observed. Contrary to the BRAFV600E-mutated melanoma cell
lines, there was no obvious combination effect of dinaciclib with
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vemurafenib in a NRASQ61R-mutatedmelanoma cell line (SK-MEL-2)
or a BRAF/NRAS-wild-type melanoma cell line (MeWo; Fig. 5A). We
further confirmed effects of the combination of dinaciclib and vemur-
afenib in the induction ofmelanoma cell apoptosis using annexin V-PI
staining (Supplementary Fig. S3A). Importantly, the combination of
trametinib with dinaciclib inhibited cell growth (Fig. 5B) or induced
apoptosis (Supplementary Fig. S3B) more effectively than either single

treatment, not only in BRAFV600E-mutant melanoma cells, but also in
NRASQ61R-mutant or BRAF/NRAS-wild type melanoma cells. We
also observedmore effective growth suppression of all these variants of
melanoma cells by the combination of palbociclib, a BAX-dependent
inhibitor (Fig. 2A), with dinaciclib as compared with either single
treatment alone (Fig. 5C). Interestingly, the combination of vemur-
afenib with trametinib (both inhibit melanoma cell growth through

Figure 1.

Dinaciclib induced cell-cycle arrest and apoptosis inmelanoma cells.A,Humanmelanoma cells were treated with dinaciclib at the indicated doses for 72 hours. After
72-hour incubation, cell viabilitywas assessed by the CellTiter-Glo 2.0 assay. Relative growth to vehicle control is shown. Data are shown as themean� SD of at least
three independent experiments. �P <0.01 by two-wayANOVAwith Bonferroni correction comparedwith each cell line treatedwith vehicle.B,Humanmelanoma cell
lines A2058 (BRAFmutant), M14 (BRAFmutant), SK-MEL-2 (NRASmutant), andMeWo (BRAF/NRAS-wild type) were treatedwith 50 nmol/L dinaciclib for 12 hours.
The treated cells were subjected to EdU incorporation assay. Top panels show the representative FACS patterns in A2058 and M14 cells. Bottom panels show the
means of each phase in the cell cycle in fourmelanoma cell lines.C,All treated cellswere subjected to annexin V/PI staining. Data are themeans� SD of at least three
independent experiments. � , P < 0.01 by two-way ANOVA with Bonferroni correction compared with each cell line treated with vehicle.
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Figure 2.

BAK is required for dinaciclib-induced apoptosis in melanoma cells.A, Parental A2058 cells (-) or A2058 cells lacking BAX or BAK (BAX�/� or BAK�/�) were treated
with dinaciclib or palbociclib at the indicated doses for 72 hours. Cell growthwas assessedby the CellTiter-Glo 2.0 assay.Data are shown as themeans� SDof at least
three independent experiments. #, P <0.01 by two-way ANOVA with Bonferroni correction compared with parental A2058 cells treated with each concentration of
dinaciclib. B, A2058, M14, SK-MEL-2, and MeWo melanoma cells transfected with siCNTL, siBAX, or siBAK for 48 hours were treated with dinaciclib at the indicated
dose for an additional 72 hours. Other conditions were similar to A. Whole cell lysates of transfected cells were subjected to Western blotting. The band intensities
weremeasured by ImageJ, normalized to that of siCNTL-transfected cells, and shownbelow each panel.C–E, Parental A2058 cells, A2058BAX�/�, or A2058BAK�/�

cells were treated with 50 nmol/L dinaciclib for 24 hours. The treated cells were subjected to Western blotting (C), Caspase-Glo 3/7 assay (D), and annexin V/PI
staining (E). The band intensities of cleavedPARPweremeasured by ImageJ, normalized to that of nonknockout cellswith dinaciclib, and shown below each panel. #,
P <0.01 by two-way ANOVAwith Bonferroni correction compared with parental A2058 cells treated with each concentration of dinaciclib. F,A2058melanoma cells
treated with 50 nmol/L dinaciclib for 24 hours were fixed, permeabilized, and stained using an antibody recognizing the conformational change of BAK. The BAK
activation state was analyzed by flow cytometry. Data are shown as the means� SD of at least three independent experiments. � , P < 0.01 by two-way ANOVAwith
Bonferroni correction compared with A2058 cells treated with vehicle.
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BAX; Fig. 4) did not show any additional antimelanoma effects
compared with either single treatment (Fig. 5D). In contrast with
dinaciclib, the growth inhibition by either vemurafenib or trametinib
could not be rescued by MCL1 overexpression (Supplementary Fig.
3C). Further, we also determined the significance of BAX and BAK for
the combination of dinaciclib and vemurafenib in the melanoma
growth suppression (Fig. 5E). Finally, we tested a rational combination
of dinaciclib and vemurafenib in a mouse xenograft model using
A2058 cells. Consistent with our in vitro findings, the growth of A2058
tumors was significantly suppressed by the combination of dinaciclib
and vemurafenib as compared with either vemurafenib or dinaciclib
treatment alone (Fig. 5F). These results indicate that the combination
of dinaciclib and vemurafenib effectively suppresses the A2058 mel-
anoma tumor growth in vivo. Collectively, these results strongly
support use of a rational combination of BAK-dependent drug,
dinaciclib, with BAX-dependent drugs, such as BRAF, MEK, or
CDK4/6 inhibitor, as an attractive strategy for treating melanoma.

Discussion
CDKs are appealing molecular targets for numerous cancers due to

their aberrant activation by their mutation or alterations of upstream
inhibitory molecules such as p16, p21, or p27. Although CDK4/6

inhibitors, such as palbociclib, have been clinically used to treat some
breast cancers, dinaciclib has not been approved for cancer therapy,
although some clinical trials are ongoing. We demonstrated that
dinaciclib suppresses melanoma cell growth by reducing MCL1
expression and inducing BAK-dependent cell death (Fig. 2). Consis-
tent with our findings, MCL1 expression was reported as a predictive
biomarker of dinaciclib for its responsiveness against solid tumor
cells (37). Moreover, the molecular mechanism(s) that regulate the
expression of MCL1 through CDK2 and CDK9 were previously
reported (38, 39). CDK2 regulates the phosphorylation and stabiliza-
tion of MCL1 (38), whereas CDK9 controls transcriptional regulation
of MCL1 mRNA expression (39), and these mechanisms may be
related to the pharmacological effects of CDK2/9 inhibition in reduc-
ing MCL1 expression by dinaciclib and other potent CDK2/9 inhibi-
tors (Fig. 2A; Supplementary Figs. S1D–S1G). Similarly, siRNAs
against either CDK2 or CDK9 suppressed MCL1 expression in mel-
anoma cells (Supplementary Fig. S1H). In addition to dinaciclib, both a
CDK2 inhibitor and a CDK9 inhibitor also suppressed melanoma
growth through BAK (Supplementary Fig. S1C). This implies that not
only CDK9 but also CDK2 regulates the MCL1–BAK axis in mela-
noma. In addition to melanoma in this study, MCL1 addiction has
been described in several cancers withMCL1 gene amplification (40).
Furthermore, genes related to MCL1 degradation, such as FBXW7,

Figure 3.

The MCL1–BAK axis is required for growth suppression by dinaciclib in melanoma cells. A, A2058 melanoma cells were treated with 50 nmol/L dinaciclib for 3 or
6 hours. Whole-cell lysates were subjected toWestern blotting (left). The mRNA levels were quantified by real-time RT-PCR (right). Relative mRNA expression was
normalized to the value of eachmRNAat 0 hours. Data are themeans� SDof at least three independent experiments. �, P <0.01 by two-wayANOVAwith Bonferroni
correction compared with eachmRNA expression level relative to vehicle control. B and C, A2058melanoma cells stably overexpressing HA/MCL1 (HA/MCL1) or E2-
Crimson (E2-Crim, as a control) were treated with dinaciclib at the indicated dose for 24 hours. Cell viability (B) and protein expression levels (C) were measured.
Other conditions were similar to Fig. 2A.
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have also been found to be mutated in several cancers (41, 42). In light
of the observed reduction in the MCL1 mRNA level (Fig. 3A),
pharmacological suppression of MCL1 by CDK2/9 inhibition may be
a valuable therapeutic strategy for melanoma and other cancers with
aberrant MCL1 expression.

Targeting oncogenic BRAF mutations with small molecule inhibi-
tors can lead to significant clinical responses in BRAFV600E-
melanoma (3–5). However, this strategy fails to eradicate tumors in
most patients due to many resistance mechanisms, which include
reactivation of the downstream kinases MEK1/2 (43). Although the
combination of BRAF inhibition with MEK inhibition is known to
improve the progression-free survival inmelanoma patients compared
with vemurafenib alone (6), their early survival rate was not signif-
icantly improved and eventual relapse remains common. In addition,
the combination of BRAF inhibition withMEK inhibition did not have
any additive effects on melanoma growth in vitro (Fig. 5D). These
results suggest that intrinsic resistance is not targeted by this combi-
nation. To overcome their intrinsic resistance to BRAF inhibition, we
focused onBAK-mediated cell death, whichwas not fully activated.We
observed significant suppression of growth by vemurafenib combined
with dinaciclib compared with the combination of vemurafenib and
trametinib (Fig. 5), suggesting that inhibitors of CDK2/9, including
dinaciclib, are effective and rational combination with BRAF inhibi-
tors for melanoma treatment to overcome intrinsic resistance.

Our study supports the use of the combination of a BAK-activating
drug with a BAX-activating drug as a rational therapeutic strategy for
different cancers, but we focused on such a combination for melano-
ma. There aremany strategies of drug combinations in cancer therapy.
One is based upon combining drugs with different mechanisms of
action such as cisplatin with paclitaxel for lung cancer. Although their
mechanisms of action are different, these two drugs may activate the
same downstream apoptotic effectors, BAX and BAK. Furthermore, in

a combination containing one drug that activates both BAX and BAK,
such as cisplatin (26), their combined effects may be weaker than
expected, and adverse effects may be severe due to cytotoxicity in
normal cells. Another combination strategy is based on an under-
standing of the acquired resistant mechanisms for the first drug, and
supports the combination of vemurafenib with trametinib for mela-
noma. As acquired resistance can be caused by reactivation of
upstream genes (e.g., NRAS; ref. 44), parallel genes (e.g., COT; ref. 45),
or downstream genes (e.g., MEK1/2; ref. 46) relative to the target
oncogene (e.g., BRAF V600E), the combination of two drugs may be
based on targeting the common oncogenic pathway such as theMAPK
pathway. Thus, for the activation of the same apoptotic effectors, BAX
or BAK, as we observed with the combination of vemurafenib and
trametinib (Fig. 4), there are no notable additive anti-tumor effects
in vitro (Fig. 5D). Considering the clinical benefit of combined therapy
with vemurafenib and trametinib over vemurafenib monotherapy (6),
the advantage of the latter is difficult to predict without in vivo long-
term study. However, our proposed rational combination provides a
complementary approach to induce cancer cell death using both BAX-
activating and BAK-activating drugs.

Regarding the effectiveness of such combinations, the simultaneous
use of two cytotoxic chemotherapeutic agents may cause severe side
effects by affecting the growth of normal healthy cells. Considering the
good antitumor efficacy at apparently well-tolerated doses in our
in vitro experiments, at least one molecular-targeted drug that is
specific to cancer cells may be necessary to reduce the cytotoxicity
in the combination. Furthermore, the efficacy of each drug or their
combination may be limited in cancers with genomic alteration of
either BAX or BAK as observed in BAX-/BAK-knockout cells (Fig. 2, 3
and 5). Indeed, BAX frameshift mutations are frequently found in
DNA mismatch repair-deficient cancers, such as colon, gastric, and
endometrial malignancies (47, 48), and frameshift/truncating

Figure 4.

Vemurafenib/Trametinib induces apoptosis through the activation of BAX inmelanoma cells.A,Parental A2058, A2058BAX�/�, orA2058BAK�/� cellswere treated
with vemurafenib at the indicated doses for 72hours.Other conditionswere similar toFig. 2A.B,Parental A2058, A2058BAX�/�, orA2058BAK�/� cellswere treated
with 10 mmol/L vemurafenib for 48 hours. Annexin V–positive cells (%) and protein expression levels were measured by flow cytometry (top) andWestern blotting
(bottom), respectively. Other conditionswere similar to Fig. 2C and 2E.C,Parental A2058, A2058 BAX�/�, or A2058 BAK�/� cellswere treatedwith trametinib at 30
nmol/L for 72 hours. Other conditions were similar to Fig. 2A.
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mutations of BAK have been observed in some cancers in TCGA data
sets (49). Thus, combination therapies targeting BAX- and BAK-
dependent cell death may have limitations in some cancer settings.

In summary, we identified the dinaciclib as an anti-melanoma drug
candidate that regulates the MCL1-BAK axis, and it may be a potent
complementary drug to the BRAF inhibitor vemurafenib for mela-
noma treatment to induce BAX-dependent cell death. We propose a
novel approach to identify rational drug combinations for cancer
treatment by examining cell intrinsic drug resistance or sensitivity and
targeting proapoptotic BCL2 family members.
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