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Abstract. The objective of this study was to investigate the dose-dependent effect of 1a,25-(OH)2VD3 (Vit D3) on
in vitro proliferation of goat luteinised granulosa cells (LGCs) and to determine the underlyingmechanisms of its action by

overexpressing and silencing vitamin D receptor (VDR) in LGCs. Results showed that VDRwas prominently localised in
GCs and theca cells (TCs) and its expression increased with follicle diameter, but was lower in atretic follicles than in
healthy follicles. The proliferation rate of LGCs was significantly higher in the Vit D3-treated groups than in the control
group, with the highest proliferation rate observed in the 10 nM group; this was accompanied by changes in the expression

of cell cycle-related genes. These data indicate that Vit D3 affects LGCproliferation in a dose-dependentmanner. Contrary
to the VDR knockdown effects, its overexpression upregulated and downregulated cell cycle- and apoptosis-related genes
respectively; moreover, supplementation with 10 nM of Vit D3 significantly enhanced these effects. These results suggest

that changes in VDR expression patterns in LGCs may be associated with follicular development by regulation of cell
proliferation and apoptosis. These findings will enhance the understanding of the roles of Vit D3 and VDR in goat ovarian
follicular development.
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Introduction

The active form of vitamin D, 1a,25-(OH)2VD3 (vitamin D3,

henceforth referred to as Vit D3), is a member of the family of

steroid hormones and is known to perform a wide spectrum of
biological functions (Suda 2010). All the genome-level actions
of Vit D3 are mediated by the vitamin D receptor (VDR), which
is amember of the nuclear steroid hormone receptor superfamily

(Carlberg andCampbell 2013). Consequently, Vit D3 deficiency
is associated with various disorders of female reproduction such
as reduced fertility, arrested follicular development, ovulatory

dysfunction and delayed oestrous cycle (Lorenzen et al. 2017;
Pilz et al. 2018). The vital roles of Vit D3 have been demon-
strated by studying VDR in human female reproductive organs

such as the placenta (Pospechova et al. 2009; Nguyen et al.

2015), uterus (Viganò et al. 2006) and ovaries (Parikh et al.

2010). Likewise, the roles of VDR were evidenced by its
detection in animal studies such as that in the placenta of mice

(Shahbazi et al. 2011), uterus of mice (Zarnani et al. 2010), pigs
(Grzesiak et al. 2019) and buffaloes (Emam et al. 2016) and
ovaries of mice (Shahbazi et al. 2011) and goats (Yao et al.

2017b). These findings suggest that Vit D3 plays an important
role in female reproduction.

The localisation of VDR in ovarian granulosa cells (GCs;

Shahbazi et al. 2011; Wojtusik and Johnson 2012; Herian et al.
2018) suggests its importance in the process of folliculogenesis,
which was confirmed in VDR-null female mice that showed
uterine hypoplasia along with impaired folliculogenesis and

complete infertility despite dietary Vit D3 supplementation
(Yoshizawa et al. 1997; Kinuta et al. 2000). Nevertheless,
VDR could also perform some functions independent of its

ligand (Vit D3); for example, it is known to be involved in
calcium metabolism, cell proliferation and apoptosis (Carlberg
and Campbell 2013; Oda et al. 2018). Therefore, we hypothe-

sised that VDRplays an important role in follicular development
by regulating GC proliferation and apoptosis, either depen-
dently or independently of its ligand. In mammals, only a few
follicles ovulate and more than 99% of follicles do not mature

fully, but instead undergo atresia during the developmental
process (Asselin et al. 2000;Matsuda et al. 2012). The excessive
rate of follicular atresia and apoptosis restricts the number of
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developed and ovulated follicles, which may significantly
impair the stimulatory actions of follicular steroids on female
reproduction (Kaipia and Hsueh 1997). Thus, elucidating the

local mechanism of VDR action in follicular development may
explain the effects of Vit D3 on female fertility, especially on the
proliferation and apoptosis of GCs.

Increasing evidence indicates that Vit D3 modulates follicu-

lar development (Xu et al. 2018), which may occur via regula-
tion of cell cycle- and apoptosis-related genes (Samuel and
Sitrin 2008; Irani and Merhi 2014); Vit D3 may also act on

trophoblast cells through placental VDR (Knabl et al. 2017;
Nguyen et al. 2018). Our previous study was the first to suggest
that an appropriate amount of Vit D3 can promote proliferation

of luteinised granulosa cells (LGCs) by regulating cell cycle-
and antioxidant-related genes (Yao et al. 2017b). Nevertheless,
dose-dependent responses of goat LGCs toVit D3 still need to be

explored.
Therefore, in this study, we used goat LGCs as an experi-

mental model to test whether Vit D3 has a dose-dependent
influence on the proliferation of LGCs. Furthermore, we deter-

mined VDR expression patterns in follicles of different sizes,
either healthy or atretic, and identified its underlying mecha-
nism by overexpressing or silencing VDR in LGCs. This study

will not only improve our understanding of the roles of Vit D3

and VDR in follicular development but also suggests effective
amounts of Vit D3 that could influence follicular development

as reference for calculating concentrations of dietary Vit D3

supplements for non-pregnant goats.

Materials and methods

Reagents and ethics

Unless otherwise indicated, all chemicals and reagents were
purchased from Sigma-Aldrich and culture media were pro-
cured from Life Technologies. All antibodies were obtained
from commercial sources (Table 1). The study protocol was

approved by the Institutional Animal Care and Use Committee
of the Nanjing Agricultural University (SYXK2011–0036).

Animals and sample collection

The Yangtze River Delta white goat (non-pregnant) was used as
a model for our study. During the breeding season (October to
March of consecutive years), goat ovaries were collected from a

local abattoir (Taizhou, Jiangsu, China; 328000N, 1198570E),

immediately immersed in sterile physiological saline (at
30–358C) supplemented with 100 IUmL�1 penicillin and
50 mgmL�1 streptomycin and transported to the laboratory

within 2 h. The connective tissues and attached oviducts were
removed after five washes with Dulbecco’s phosphate-buffered
saline (DPBS). For immunohistochemical assay, five ovaries
were randomly selected, fixed in 4% formaldehyde for 24 h and

then embedded in paraffin. For VDR mRNA and protein anal-
ysis in follicles of different sizes, all visible antral follicles from
,20 ovaries were dissected, measured with a caliper and clas-

sified into three sizes (#2, 2–5 and $5mm). The follicle state
(healthy or atretic) was determined based on morphological
criteria using a surgical dissecting microscope as previously

described (Moor et al. 1978). In total, 20 large follicles ($5mm;
12 healthy and 8 atretic), 40 medium follicles (2–5mm;
18 healthy and 22 atretic) and 68 small follicles (#2mm; 40

healthy and 28 atretic) were collected. Subsequently, for each
analysis (for different sizes of healthy or atretic follicles) of
VDRmRNA and protein, three follicles were randomly selected
from large follicles and three pooled samples were prepared

from all collected categories of the medium and small follicles.
It is well known that the GCs of various sizes of follicles have
different shapes and transcriptome profiles at different follicular

development stages (Hatzirodos et al. 2014). Therefore, GCs
were further isolated only from medium follicles (2–5mm) for
the in vitro experiments.

Isolation of goat GCs

GoatGCswere harvested from the 2–5mmhealthy follicles using

our previously described method (Zhang et al. 2016). Briefly,
GCs were aspirated with a micropipette, transferred to 15mL
centrifuge tubes and centrifuged at 1500g for 5min at room

temperature (about 258C). Next, the supernatant (follicular fluid)
was discarded and GC pellets were resuspended in red blood
cell lysis buffer for 1min. After washing with DPBS, the cell
pellets were resuspended in 0.3% hyaluronidase for 90 s. Finally,

the GCs were resuspended in basic culture medium (BCM;
Dulbecco’s modified Eagle’s medium (DMEM)/F12 medium
supplemented with 10% fetal bovine serum (FBS), 100 IUmL�1

penicillin and 100 gmL�1 streptomycin). The isolated GCs were
added to T25 culture flasks at 5� 104 cells cm�2 and incubated at
378Cand 5%CO2.After 48h of cultivationwith serum,most cells

converted into LGCs (Tosca et al. 2010).

Table 1. Information about the antibodies used in the study

IHC, immunohistochemistry; IF, immunofluorescence; WB, western blotting

Antibody Cat no. Company Dilution for IHC/IF Dilution for WB

VDR 14526–1-AP ProteinTech, Chicago, USA 1 : 200 1 : 500

Bcl-2 12789–1-AP ProteinTech, Chicago, USA – 1 : 1000

BAX 50599–2-lg ProteinTech, Chicago, USA – 1 : 2000

p27 25614–1-AP ProteinTech, Chicago, USA – 1 : 1000

b-actin bs-0061R Bioss, Beijing, China – 1 : 2000

Goat anti-rabbit lgG A0208 Beyotime Biotechnology, Nantong, China 1 : 100 1 : 1000

Goat anti-rabbit Alexa Fluor 594 B40925 Invitrogen, Carlsbad, CA, USA 1 : 200 –
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Experimental design of in vitro LGC culture

The first experiment was conducted to test whether Vit D3 has a
dose-dependent effect on the in vitro proliferation of goatLGCs.A
total of 5� 105 cells perwellwere seeded in 6-well plates inBCM

and incubated for 24 h. Themediumwas replacedwith freshBCM
containing various concentrations of Vit D3 (0, 1, 10 or 100 nM;
Selleck) and the cells were further incubated at 378C and 5% CO2

for 48 h. LGCs were concentrated by centrifuging at 5000g for
5min at - room temperature (about 258C) to remove the culture
medium before storing the cells at �808C for further analyses.

The second experiment was designed to investigate the

mechanism of action of VDR by overexpression or silencing
VDR in LGCs. The overexpression vector (derived from the
pEX-4 vector) and small interferingRNA (siRNA) ofVDRwere

synthesised by GenePharma; the siRNA targeted the intron–
exon junction region of the VDR sequence. For overexpression,
the full-length mRNA sequence of the VDR gene (GenBank

accession number: KY307887.1) was used. For silencing, three
siRNAs were synthesised (the sequences are listed in Table 2).
The pEX-4-VDR plasmid or siRNAs were transfected into goat

LGCs using Lipofectamine 2000 (Life Technologies). Next,
48 h after the transfection, the cells were collected to confirm the
transfection efficiency by quantitative reverse-transcription
polymerase chain reaction (qRT-PCR) and western blotting.

The transfected LGCs were then subjected to subsequent analy-
sis; LGCs transfected with the empty vector (pEX-4) and
negative control siRNA served as negative controls (pEX-4-

Control and NC respectively). Meanwhile, as preliminary
experiments, we compared the pEX-4-VDR and siRNA-393
treatments not only with their negative controls (empty vector

(pEX-4) and negative control siRNA) but also with blank
controls and found no significant differences in VDR gene
and protein levels between the blank and negative controls.
Therefore, in the final study, we used negative controls to

observe the effects of VDR overexpression and knockdown.
Moreover, an appropriate concentration of Vit D3 (as deter-
mined in the first experiment) was added to the VDR over-

expression or silencing groups.

Immunohistochemistry and immunofluorescent assays

Immunohistochemical analysis was performed according to our

previously described method (Yao et al. 2017a). Briefly, whole
fixed ovaries were sectioned into 6-mm slices, the endogenous

peroxidase was quenched by incubating the deparaffinised
sections with 3% H2O2 at 378C for 10min and antigen retrieval

was carried out in citrate buffer solution at 1008C for 15min.
After the sections were blocked with 5% bovine serum albumin
(BSA) at 378C for 30min, they were incubated with rabbit anti-

VDR antibody overnight at 48C and further incubated with goat
anti-rabbit IgG at 378C for 30min. Negative controls were
treated with Tris-buffered saline (TBS) buffer instead of

primary antibody. The sections were next treated with 3,3’-
diaminobenzidine (DAB) and examined under a microscope
(Nikon).

Immunofluorescence assays were performed according to

our previously described method (Yao et al. 2018), with a slight
modification. In brief, LGCs were seeded onto coverslips and
cultured in 24-well plates (5� 104 cells per well) for 48 h, as

described above for the first experiment. The LGCs were then
fixed with 4% paraformaldehyde for 20min, permeabilisedwith
0.25% Triton X-100 for 10min, blocked with 5% BSA for 1 h at

room temperature (about 258C) , incubated with rabbit anti-
VDR antibody overnight at 48C and further incubated with goat
anti-rabbit conjugated with Alexa Fluor 594 for 1 h at room
temperature. Nuclei were stained with 40,6-diamidino-2-pheny-

lindole (DAPI) and the cells were examined under an LSM710
laser-scanning confocal microscope (Carl Zeiss). Negative
control images (NCI) were treated with TBS instead of primary

antibody.

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide (MTT) assay

To assess cell viability, an MTT assay (Boster Co., Ltd) was
performed. A total of 5� 103 cells perwell in 100mL freshBCM
were seeded in 96-well plates for 24 h. The in vitro culture was

carried out as described in the subsection ‘Experimental design
of in vitro LGC culture.’ After 48 h, 10 mL of the MTT reagent
was added to 100mL of the supernatant from each well and

incubated in a humidified atmosphere containing 5% CO2 at
378C for 4 h. Subsequently, the medium was removed and
100mL of a formazan solubilisation solution was added to dis-

solve the formazan crystals. Optical density was measured at
570 nm on a Synergy H1/H1MFD analyser (BD Biosciences).

50-ethynyl-20-deoxyuridine (EdU) incorporation assay

Cell proliferation assays were performed using the Click-iT
EdU assay kit (KeyGen Biotech Co., Ltd). Towards this end,

5� 104 cells in 100mL fresh BCM were seeded per well in
24-well plates for 24 h. The in vitro culture was carried out as
described above for the second experiment. After transfection at

48 h, 200mL of an EdU solution was added at a final concen-
tration of 50mM and was allowed to react with the cells for 2 h.
The cells were then washed with DPBS three times, fixed with

4% formaldehyde for 30min and permeabilised with 0.5%
Triton X-100 for 10min at room temperature (about 258C).
Next, the cells were incubated with 200mL Click-iT reaction

buffer for 30min and washed with DPBS containing 3% BSA.
DNAwas stained with Hoechst 33342 for 30min and the results
were visualised by means of an LSM710 laser-scanning con-
focal microscope (- Carl Zeiss). NCI were treated with an equal

Table 2. Sequences of the three siRNA used in this study

S: sense; A, anti-sense

Name Sequence (50–30)

NC S:50-UUCUCCGAACGUGUCACGUTT-30

A:50-ACGUGACACGUUCGGAGAATT-30

siRNA1 (VDR-393) S:50-GCUUCCAUUUCAACGCUAUTT-30

A:50-AUAGCGUUGAAAUGGAAGCTT-30

siRNA2 (VDR-1075) S:50-GCUGAAGUCGAGUGCCAUUTT-30

A:50-AAUGGCACUCGACUUCAGCTT-30

siRNA3 (VDR-1159) S:50-CCAGGACUACAAGUACCAATT-30

A:50-UUGGUACUUGUAGUCCUGGTT-30
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volume of culture medium without FBS instead of EdU. The
percentage of EdU-positive cells was calculated from five dif-

ferent fields by semiquantitative analysis.

Flow cytometric analysis of cell cycle

This procedurewas performed as described by Fang et al. (2017)

with minor modifications. Briefly, cells (with silenced or
overexpressed VDR) at ,90% confluence were digested,
washed and resuspended in DPBS. The cells were then fixed

with cold 70% ethanol overnight at �208C, washed with cold
DPBS three times, incubatedwith 100mLRNaseA (10 ngmL�1)
for 30min at 378C and finally stained with 1mL propidium
iodide for 30min. The cell cycle stages were identified by flow

cytometry (BD Biosciences).

qRT-PCR

RNA extraction and cDNA synthesis were performed according

to our previously described method (Yao et al. 2017b). Briefly,
total RNA was extracted from the collected follicles and LGCs
using Trizol Reagent (Invitrogen). RNA concentration and

purity were detected using an ND-2000 spectrophotometer
(NanoDrop). Next, cDNA was synthesised using the Prime-
Script RT Reagent Kit with gDNA Eraser (Takara). The qRT-

PCR primers were designed using Primer 5.0 software (Premier,
Canada) and are presented in Table 3. Glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) served as an internal con-
trol. An ABI 7500 real-time PCR system (Applied Biosystems)

was used for qRT-PCR and the reactions were carried out using
the FastStart SYBRGreenMaster Mix (Roche) according to the
manufacturer’s protocol. The relative mRNA levels of target

genes were analysed using the DDCT method.

Western blotting

Total-protein samples were prepared from the collected follicles

and LGCs using the cell protein extraction reagent (Beyotime
Biotechnology) containing phenylmethanesulfonyl fluoride.

Protein concentrations were determined using the bicinchoninic
acid (BCA) protein assay kit (Beyotime Biotechnology).

Protein from each group (20–40mg) was separated by elec-
trophoresis on a 12% sodium dodecyl sulphate (SDS) polyacryl-
amide gel and then transferred onto polyvinylidene fluoride

(PVDF) membranes (Millipore). After blocking with 5% (w/v)
fat-free milk for 1 h at room temperature, the membranes were
incubated with anti-VDR, anti-p27, anti-B-cell lymphoma 2
(Bcl-2), anti-Bcl-2-associated X protein (BAX) or anti-b-actin

antibodies overnight at 48C, followed by incubation with a goat
anti-rabbit IgG antibody for 1 h at room temperature. The
proteins were visualised using an enhanced chemiluminescence

detection system (Fujifilm) and the chemiluminescence inten-
sity of each protein band was quantified by the Image J software
(National Institutes of Health).

Statistical analysis

All the experiments were conducted three times independently

and each experiment involved five replicates; the data are
expressed as the mean� standard error of the mean. Statistical
analysis was carried out as follows: (1) two-way analysis of

variance (ANOVA) with the follicle state as one variable and
size of the follicle as the other variable was performed to study
their interaction, (2) data on the follicles of different diameters

and exposure of LGCs to different concentrations of Vit D3

were evaluated by one-way ANOVA and (3) other data were
subjected to Tukey’s test. All analyses were performed using

the SPSS Statistics software (Version 19.0; IBM Corp.) and
P, 0.05 was considered to be statistically significant.

Results

Expression patterns of VDR in healthy and atretic follicles of
different sizes

VDR was localised on the GCs and theca cells (TCs) in healthy
and atretic follicles (Fig. 1a, b). No positive signal was detected
in the negative controls (Fig. 1c). There was no significant

Table 3. Primer sequences used for this study

Gene Primer sequence (50–30) Genebank No. Size (bp)

VDR F: TCCTCTCCAGACACAACGGA XM_018047873.1 91

R: ACAGGTCCAGGGTCACAGAA

p21 F: CTAAGTGGGCAAATATGGGTCTGG XM_018039118.1 107

R: CAGGATGCTACAGGAGCTGGAAG

p27 F: AAACCCAGAGGACACGCATT XM_005680816.3 100

R: GGCAGGTCGCTTCCTTATCC

CDK4 F: CGTTGGCTGTATCTTTGC XM_005680266.3 256

R: GATTCGCTTGTGTGGGTT

cyclin D1 F: CCGTCCATGCGGAAGATC XM_018043271.1 108

R: CAGGAAGCGGTCCAGGTAG

BAX F: GCATCCACCAAGAAGCTGAG XM_013971446.2 130

R: CCGCCACTCGGAAAAAGAC

Bcl-2 F: ATGTGTGTGGAGAGCGTCA XM_018039337.1 254

R: AGAGACAGCCAGGAGAAATC

GAPDH F: CGACTTCAACAGCGACACTCAC XM_005680968.3 119

R: CCCTGTTGCTGTAGCCGAATTC
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interaction between the follicle size and state in terms of VDR
mRNA (P, 0.511) and protein (P, 0.245) expression. As

shown in Fig. 1d and e, VDRmRNA and protein levels increased
significantly with increasing follicle size (P, 0.05). Among the
$5mm follicles, the expression of VDR was significantly higher

in the healthy follicles than in the atretic follicles (P, 0.05).
However, no significant difference was observed between the
#2mm healthy and atretic follicles (P. 0.05). In addition, VDR

mRNAexpression among the 2–5mmhealthy and atretic follicles
showed no significant difference (P. 0.05); however, a signifi-
cant difference in VDR protein levels was observed (P, 0.05).

Vit D3 promotes proliferation of goat LGCs cultured in vitro

After treatment of LGCs with various concentrations of Vit D3

for 48 h, the expression of VDRwas determined in all the groups
(Fig. 2a). The intensity of the red fluorescence of VDR in theVit
D3-treated groups was significantly higher than in the control

group and the highest level was detected in the 10 nM Vit D3-
treated group (Fig. 2b; P, 0.05). A similar trend was observed
in the MTT assay (Fig. 2c). However, there was no significant

difference between the 1 nM and 100 nM Vit D3-treated groups
(Fig. 2c; P. 0.05).

As presented in Fig. 3, the mRNA expression of cyclin-
dependent kinase 4 (CDK4) and cyclin D1 in the Vit D3-treated
groups was significantly higher than in the control group and the

highest mRNA expression among these was found in the 10 nM
group (P, 0.05). Furthermore, the mRNA expression of CDK4
and cyclin D1 in the 1 nM group was significantly higher than in

the 100 nM group (P, 0.05). However, no significant differ-
ence in cyclin D1 mRNA expression was observed between the
1 nM and 10 nM groups (P. 0.05). The highest and the lowest

mRNA expression of p21 was found in the control group and
10 nM group respectively (P, 0.05). The p21 mRNA level in
the 100 nM group was significantly higher than in the 1 nM and
10 nM groups (P, 0.05).

Efficiency of VDR overexpression and suppression in
goat LGCs

To overexpress VDR, the pEX-4-VDR plasmid was constructed
by cloningVDR into the pEX-4 vector (Fig. 4a) andwas verified
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by cleaving it into 4773- and 1278-bp fragments using HindIII

and SalI (Fig. 4b). At 48 h after the transfection, green fluores-
cence was observed in both the control group and VDR-

transfected group (Fig. 4c). However, the mRNA and protein
expression of VDR in the overexpression group was signifi-
cantly higher than in the control group (Fig. 4d and e

respectively; P, 0.05). Next, siRNA was employed for the
suppression of VDR in LGCs. The knockdown efficiency of
siRNA-393 was the highest among the three siRNAs tested

(Fig. 4d) and the mRNA and protein expression levels in the
siRNA-393 group were significantly lower than in the negative
control group (Fig. 4d and e respectively; P, 0.05).
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Influence of VDR on proliferation and cell cycle distribution
of goat LGCs

To assess the effect of ectopic expression of VDR on cell
proliferation, a Click-iT EdU assay was performed (Fig. 5a, b).
Overexpression of VDR promoted, whereas its knockdown

inhibited cell proliferation (Fig. 5b; P, 0.05). Furthermore,
flow cytometric analysis revealed that the percentage of
G0/G1 phase cells significantly increased and that of S phase
cells decreased in the VDR knockdown group (Fig. 5e–g;

P, 0.05). However, overexpression of VDR did not change
the percentage of G0/G1 or S phase cells (Fig. 5c, d, g;
P. 0.05).

Expression of cell cycle- (p21, p27, CDK4 and cyclin D1)
and apoptosis- (BAX and Bcl-2) related genes was analysed by
qRT-PCR and western blotting (Fig. 6). VDR suppression

significantly decreased CDK4, cyclin D1 and Bcl-2 mRNA

expression (Fig. 6a, b, e; P, 0.05), but increased that of p21
and BAX as well as the BAX/Bcl-2 ratio (Fig. 6c, d, f; P, 0.05).
However, mRNA expression ofCDK4, cyclin D1 and p21 in the
VDR overexpression group showed a trend opposite to that in

the VDR knockdown group (Fig. 6a–c; P, 0.05). No effects
on BAX and Bcl-2 mRNA expression or on the BAX/Bcl-2
ratio were observed in the overexpression group (Fig. 6d–f;

P. 0.05). However, overexpression of VDR significantly
decreased the protein level of BAX and the BAX/Bcl-2 ratio
and increased the level of Bcl-2 protein (Fig. 6h, j–l; P, 0.05).

Although there were no significant changes in BAX and Bcl-2
protein expression in the knockdown group (Fig. 6h, j, k;
P. 0.05), the change in the BAX/Bcl-2 ratio was statistically

significant (Fig. 6l; P, 0.05). Both mRNA and protein
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expression levels of p27 decreased in the overexpression group
(Fig. 6g–i; P, 0.05). In addition, only the protein expression of

p27 in the VDR knockdown groupwas significantly greater than
in the control group (Fig. 6h, i; P, 0.05).

Vit D3 partially reinforces the effects of VDR overexpression
on LGC proliferation

As depicted in Fig. 7a, overexpression of VDRwas significantly

associated with increased proliferation of LGCs in the presence
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of Vit D3 than in its absence (P, 0.05), as supported by the
MTT assay results (Fig. 7b; P, 0.05). In contrast, Vit D3 sig-

nificantly inhibited LGCproliferation after VDR knockdown by
siRNA (Fig. 7c; P, 0.05). A similar trend was observed in the
MTT assay (Fig. 7d; P. 0.05).

Discussion

Accumulating evidence indicates that Vit D3 performs
important functions in both male and female reproduction,
primarily via VDR (Boisen et al. 2017; Lorenzen et al. 2017).

Initially, we demonstrated that VDR ismainly localised in GCs
and TCs and its expression increases with increasing follicle
size regardless of the state of the follicles. This finding agrees

with the results of other studies (Wojtusik and Johnson
2012; Yao et al. 2017b). In the present study, the expression
of VDR was significantly higher in healthy follicles than in

atretic follicles when the follicle size was$2mm; this finding

suggests that Vit D3 may be important for follicular
development.

According to some reports, including a study from our
laboratory, an appropriate concentration of Vit D3 can affect
follicle development by promoting GC proliferation and

steroidogenesis (Merhi et al. 2014; Hong et al. 2017; Yao
et al. 2017b). However, whether Vit D3 has a dose-dependent
effect on in vitro proliferation of goat GCs remained unclear.We

observed that among various concentrations of Vit D3, the
10 nM dose induced the highest proliferation rate of cultured
goat LGCs; this rate decreased as the Vit D3 concentration

increased to 100 nM. These findings suggest that Vit D3

enhances the proliferation of LGCs in a dose-dependentmanner.
This observation is supported by another study, which revealed
that Vit D3 enhances the proliferation of hen GCs in a dose-

dependent manner (Wojtusik and Johnson 2012). Additionally,
enhanced proliferation of endothelial progenitor cells with
10 nM Vit D3 has been reported (Grundmann et al. 2012).
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Although our findings were corroborated by both immunofluo-
rescence and cell proliferation assays, some studies indicate that

10 nM Vit D3 inhibits cell proliferation (Olsson et al. 2016;
Chen et al. 2018a; Emanuelsson et al. 2018). This discrepancy
might be related to differences in the requirements for Vit D3 by

different cell types. In addition, we observed a positive effect of
Vit D3 addition on VDR expression, which is corroborated by
previous reports (Yao et al. 2017b; Xu et al. 2018). However, a

combination of Vit D3 at 100 nM and testosterone did not affect
VDR levels in rat GCs (Lee et al. 2014), the details of which
need to be further studied.

The molecular mechanisms by which Vit D3 regulates the

proliferation of LGCs are still not fully understood. Cell prolif-
eration is precisely controlled by cyclins and cyclin-dependent
kinases (CDKs), whereas CDK function is tightly regulated by

cyclin-dependent kinase inhibitors (CKIs), such as p21 (Stanley
et al. 2011). Moreover, the activation of cyclin D1–CDK4
complexes is required for cells to reach the G1/S restriction

point (Cong et al. 2017). We previously reported that Vit D3

drastically increases the percentage of cells in the S phase while
decreasing that of cells in the G0/G1 phase (Yao et al. 2017b).
This concept fits with our present results, where Vit D3 supple-

mentation (#10 nM) increased the mRNA expression of CDK4
and cyclin D1 and decreased that of p21. Consistent with earlier
reports (Verlinden et al. 1998; Yao et al. 2017b), Vit D3

promoted progression of the cell cycle from the G0/G1 to the
S phase through upregulation of CDK4 and cyclin D1 and
downregulation of p21. Moreover, excess Vit D3 (e.g.

100 nM) restricts cell proliferation, as evidenced by the MTT
results, by downregulating the expression of CDK4 and cyclin

D1 and upregulating p21 compared with the other Vit D3-treated

groups (Chiang et al. 2016, 2017).
VDR may play vital roles in proliferation and apoptosis in

many cell types (Consiglio et al. 2014; He et al. 2018; Oda et al.
2018; Ricca et al. 2018), including acting as a the unaligned

effects (Alimirah et al. 2010). Although the ligand-independent
actions of VDR have been widely confirmed using many cell
models, its signal activator has not been identified (Pike et al.

2017). Such independent effects of VDR could be partially
responsible for the repression and induction of goat LGC
proliferation uponVDR knockdown and overexpression respec-

tively. To some extent, this theory could explain the lower
expression of VDR in atretic follicles than in healthy follicles.
On the contrary, some studies have reported a negative correla-
tion between VDR levels and proliferation in cancer cells

(Koike et al. 1997; Kovalenko et al. 2011; Chen et al. 2018b).
This discrepancymay be attributed to the difference in cell types
and conditions, since normal cells have higher VDR expression

than cancer cells (Koike et al. 1997).
To evaluate the specific effects of VDR knockdown or

overexpression, goat LGCs were further treated with an opti-

mum concentration of Vit D3 (10 nM). The different prolifera-
tion responses to Vit D3 addition suggest that Vit D3 elicits
specific responses with respect to cell proliferation depending

on the expression level of VDR. Likewise, although VDR has
significant ligand-independent effects, the availability of Vit D3

could efficiently regulate its reactions. Notably, the inhibitory
effect of Vit D3 supplementation with VDR knockdown

observed in our study could mimic the anti-proliferative effect
of Vit D3 in the case of cancer cells that weakly express VDR

(Koike et al. 1997).
To investigate the mechanism by which VDR regulates the

proliferation and apoptosis of LGCs, we attempted to identify

the downstream targets of VDR in goat LGCs. First, the cell
cycle distribution results demonstrated that the ectopic expres-
sion of VDR in LGCs changed the percentages of LGCs in the

G0/G1 and S phases of the cell cycle. Similar results were also
previously reported (Consiglio et al. 2014). Second, analysis of
cell cycle-related genes revealed that the expression of CDK4
and cyclin D1 was low in the VDR knockdown group, whereas

the reverse trend was observed in the VDR overexpression
group. Both p21 and p27 interact with cyclins to inhibit the
biological activity of cyclin–CDK complexes and to retard the

G1-to-S-phase progression of the cell cycle (Orlando et al.

2015). In the present study, the expression of p21 and p27 was
significantly decreased in the VDR overexpression group and

increased in the knockdown group. p21 has been considered as a
primary anti-proliferation target for VDR in the presence of Vit
D3 (Rao et al. 2004; Saramäki et al. 2006). Taken together, our
results suggest that VDR directly modulates the proliferation of

LGCs by regulating the expression of cell cycle-related genes.
Apoptosis is a precisely controlled process regulated by

members of the caspase and Bcl-2 families (Alabsi et al.

2016; Sahin et al. 2018). In the present study, VDR knockdown
significantly increased BAX expression and decreased Bcl-2
expression, suggesting that VDR silencing can induce apoptosis

of LGCs. Meanwhile, we observed anti-apoptotic effects of
VDR overexpression only at the protein level, which could
indicate the regulatory effect of VDR on the transcription of

apoptotic genes. Furthermore, VDR could interact with other
lipid ligands and its functions reflect a potential unliganded
effect to repress the transcription of some genes (Dowd and
MacDonald 2010). Additionally, the potential of transcription-

regulatory function of ligand-independent VDR was also noted
in vivo (Lee and Pike 2016). Notably, the unliganded activity of
VDR effectively impairs calcium homeostasis (Skorija et al.

2005; Huet et al. 2015). Therefore, although VDR has signifi-
cant ligand-independent effects, the availability of Vit D3 could
efficiently regulate these. Extensive research has shown that in

cancer cells VDR regulates proliferation and apoptosis by
controlling the expression of- transient receptor potential cation
channel, subfamily V, member 5 (TRPV5; Chen et al. 2018b)
and tumour necrosis factor a (TNF-a; Zhang et al. 2014).

Further studies are needed to elucidate the exact mechanism
of the Vit D3–VDR interaction in goat LGCs.

Culturing of GCs is a useful tool to understand the molecular

processes of follicle development; nevertheless, suitable in vitro
models to explore ovarian functions are limited (Skory et al.

2015). In this study, we used LGCs as a model for exploring the

potential dose-dependent effects of Vit D3 on the proliferation
and apoptosis of goat GCs in vitro and for elucidating the
underlying mechanism by means of overexpressing and silenc-

ing VDR, since the cultured GCs are probably converted
into LGCs during in vitro culture (Tosca et al. 2010). Although
this model may not be ideal for GC studies, our previous study
(Yao et al. 2017b) and other reports (Smolikova et al. 2013;
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Merhi et al. 2014; Hong et al. 2017; Merhi et al. 2018) have
shown that LGCs are responsive to Vit D3 treatment in vitro.

In conclusion, this study indicates that Vit D3 affects prolif-
eration of goat LGCs in a dose-dependent manner by regulating
the expression of cell cycle-related genes. The highest prolifer-

ation rate was obtained at 10 nMVit D3 supplementation, which
may serve as a reference point for calculating Vit D3 require-
ments in non-pregnant ewes. Moreover, since apoptosis of GCs

is considered to be the main mechanism underlying follicular
atresia (Asselin et al. 2000), VDR could be involved in the
regulation of the follicular atresia process in particular, by
affecting the transcription of apoptosis-related genes. We also

suggest that the expression patterns of VDR in GCs may
dominate follicular development by regulating proliferation-
and apoptosis-related genes, considering that follicular develop-

ment involves accurately controlled and timed processes that
include many endocrine and paracrine functions (Richards
2018; Wirleitner et al. 2018). Finally, VDR availability could

direct the cell proliferation responses to Vit D3. Further studies
are needed to better understand the molecular mechanisms
underlying the action of Vit D3 and VDR on follicular
development.
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