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A B S T R A C T

Rosacea is a chronic inflammatory cutaneous disease characterized by immune system anomalies and vascular
hyperreactivity. Recently, therapy of rosacea has improved substantially with the approval of Tranexamic acid
(TXA), an antifibrinolytic agent. However, we know little about the underlying mechanism. In this study, we
evaluated the effects of TXA and its molecular mechanism on rosacea by using LL37-induced mouse model and
HaCaT cell model. Rosacea-like symptoms including skin erythema and histopathological alterations, as well as
the elevated pro-inflammatory cytokines (IL-6 and TNFα) and MMP9 expression were significantly ameliorated
by TXA treatment. In addition, TXA reduced the expression levels of innate immune gene (TLR2, KLK5 and
Camp) and neutrophils relative gene in rosacea-like lesion. For adaptive immune, CD4+ T cell infiltration and
the gene expression of Th cytokines and chemokines were regulated by TXA in skin lesion. Furthermore, the anti-
inflammatory effects of TXA were associated with the inhibition of TLR2, pro-inflammatory cytokines (IL-6 and
TNFα) and chemokines (CCL10) expression in LL37-activated HaCaT cells. Finally, TXA repressed the angio-
genesis by reducing the number of CD31+ cell and downregulating the expression levels of VEGF in rosacea. In
conclusion, our finding defines a treatment mechanism by which TXA ameliorates rosacea symptoms by reg-
ulating the immune response and angiogenesis.

1. Introduction

Rosacea is a common, chronic facial inflammatory disease and ty-
pically categorized into 4 main subtypes: erythematotelangiectatic ro-
sacea (ETR), papulopustular rosacea (PPR), phymatous rosacea (PHR),
and ocular (OR) rosacea [1]. The clinical characteristics of rosacea
contain facial erythema, papules, pustules, telangiectasia, and recurrent
flushing, that have an adverse effect on quality of life of rosacea pa-
tients, although it is not a lethal disease [2–4]. Moreover, recent studies
have showed that rosacea is linked to the increase risk of dementia [5]
and incident cancer [6]. These findings indicate that rosacea may be a
response of a systemic disorder and it deserves our attention.

The pathophysiology of rosacea has yet to be fully elucidated.
However, current evidence suggested that rosacea was attribute to the
dysfunction of immune, vascular, and nervous for many years [2].
Studies showed that consistently aberrant innate immune response
plays critical role in the progression of rosacea [7]. The elevated ex-
pression of Toll-like receptor 2 (TLR2), cathelicidin antimicrobial
peptide (Camp), and kallikrein 5 (KLK5) were observed in rosacea skin

lesion, and inhibition of KLK5 improved the erythema and papules in
rosacea [8]. LL37, an important Camp identified in rosacea, was re-
ported to induce a rosacea-like skin inflammation in mice [9]. The in-
nate immune cells infiltration was also observed in rosacea including
macrophages, neutrophils and mast cells [10]. Buhl et al. revealed the
involvement of adaptive immune in rosacea including CD4+ T cells
[10,11]. In addition, as a vascular and neuronal dysfunction skin dis-
ease, histopathological features of rosacea were also characterized by
blood vessels dilation, angiogenesis and a slightly increase of nerve fi-
bers [11,12]. The gene array and qPCR results showed the elevated
levels of vascular endothelial growth factor (VEGF) and neurogenic
inflammation gene (TRP) vanilloid receptor 1 (TRPV1) in rosacea
[11,13]. The clinical agents for rosacea approved by the FDA include
doxycycline and alpha-adrenergic receptor agonists. And the clinical
efficacy of these agents were attributed to their anti-inflammatory or
anti-angiogenic properties.

Tranexamic acid (TXA) is a lysine derivative that is commonly used
as an antifibrinolytic agent to reduce the risk of excessive bleeding in
hemophilia, menorrhagia as well as the surgical procedures clinically

https://doi.org/10.1016/j.intimp.2018.12.031
Received 14 November 2018; Received in revised form 5 December 2018; Accepted 13 December 2018

⁎ Corresponding authors at: Department of Dermatology, Xiangya Hospital, Central South University, 410008 Changsha, Hunan, China.
E-mail addresses: yiya0108@csu.edu.cn (Y. Zhang), liji_xy@csu.edu.cn (J. Li).

International Immunopharmacology 67 (2019) 326–334

1567-5769/ © 2018 Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/15675769
https://www.elsevier.com/locate/intimp
https://doi.org/10.1016/j.intimp.2018.12.031
https://doi.org/10.1016/j.intimp.2018.12.031
mailto:yiya0108@csu.edu.cn
mailto:liji_xy@csu.edu.cn
https://doi.org/10.1016/j.intimp.2018.12.031
http://crossmark.crossref.org/dialog/?doi=10.1016/j.intimp.2018.12.031&domain=pdf


[14–18]. Moreover, studies showed the potential anti-inflammatory
role of TXA in cardiac surgery, acute lung injury [19–21]. Recently,
TXA was used as treatment option available for rosacea [22], never-
theless the potential molecular mechanism of its therapeutic effects is
still unclear.

In this study we investigated the role and mechanism of TXA on
rosacea by using a LL37-induced mouse model and HaCaT cell model,
and found that TXA ameliorated rosacea symptom by suppressing of
immune response and angiogenesis. Our study provides the first ex-
perimental basis for TXA treatment on rosacea.

2. Material and methods

2.1. Compounds

TXA was purchased from Selleck Chemicals (California, USA). The
LL37 was synthesized from Shenggong (Shanghai, China) with the
amino acid sequences: LLGDFFRKSKEKIGKEFKRIVQRIKDFLRNLVP-
RTE, and then purified by HPLC and their identity was confirmed by
mass spectrometry.

2.2. Animal experiments

7-week-old BALB/c mice used for experiments were purchased from
Shanghai Slac Laboratory Animal Co. Ltd. (Shanghai, China). All animal
experiments were approved by the Animal Ethics Committee of the
Xiangya Hospital of Central South University.

For the TXA treatment, TXA (Selleck Chemicals, California, USA)
was diluted infiltered PBS and 130mg/kg body by gavage daily for
seven consecutive days, LL37 peptide was injected intradermally for the
last 2 days to induce rosacea-like skin lesion as previous described [9].
The rosacea-like lesions induced by LL37 were photographed and

evaluated based on the redness score and area as previous described
[23].

2.3. Cell culture and treatment

HaCaT cells were cultured in Free‑calcium basal media (DMEM;
Gibco, ThermoFisher Scientific, USA) medium supplemented with 10%
fetal bovine serum (FBS; Gibco) and penicillin/streptomycin (50 U/ml),
in an incubator at 37 °C, 5% CO2. After HaCaT cells reached 90%
confluence, HaCaT cell were cultured in high‑calcium medium and
stimulated with TXA (120 μg/ml) for 24 h or LL37 (4 μM) for 12 h. Then
RNA was collected stored at −80 °C until analysis.

Human umbilical vein endothelial cells (HUVEC) were cultured in
RPMI Medium Modified (1640) supplemented with 10% fetal bovine
serum (FBS; Gibco) and penicillin/streptomycin (50 U/ml) in an in-
cubator at 37 °C, 5% CO2. The cells were starved overnight by serum-
free basal media and then media were removed from cells and replaced
with media containing stimulation TXA (120 μg/ml) for 24 h or LL37
(4 μM) for 12 h. RNA was collected after 12 h stored at −80 °C until
analysis.

2.4. Histologic analysis

The full thickness of rosacea-like lesion was fixed with formalin and
sectioned at 4 μm thickness. The sections were stained with hematox-
ylin and eosin (H&E) stain and their histomorphology was observed
under standard light microscopy (OLYMPUS, Japan) as previous de-
scribed [24].

2.5. Immunofluorescence

We fixed 8-mm frozen sections with paraformaldehyde for 15min at

Table 1
List of primers used for Real-time PCR.

Target gene Forward primers Reverse primers

Mouse GAPDH AGGTCGGTGTGAACGGATTTG TGTAGACCATGTAGTTGAGGTCA
Mouse CAMP GCTGTGGCGGTCACTATCAC TGTCTAGGGACTGCTGGTTGA
Mouse KLK5 ATGGGCAATGGCTACCCTG GTTCGGTTCCAGAGGGGTT
Mouse TNF-α CTGAACTTCGGGGTGATCGG GGCTTGTCACTCGAATTTTGAGA
Mouse TLR2 TCTAAAGTCGATCCGCGACAT CTACGGGCAGTGGTGAAAACT
Mouse VEGF TATTCAGCGGACTCACCAGC AACCAACCTCCTCAAACCGT
Mouse IL6 TAGTCCTTCCTACCCCAATTTCC TTGGTCCTTAGCCACTCCTTC
Mouse MMP9 CTGGACAGCCAGACACTAAAG CTCGCGGCAAGTCTTCAGAG
Mouse CXCL1 CTGGGATTCACCTCAAGAACATC CAGGGTCAAGGCAAGCCTC
Mouse CXCL5 GTTCCATCTCGCCATTCATGC GCGGCTATGACTGAGGAAGG
Mouse CXCL10 CCAAGTGCTGCCGTCATTTTC GGCTCGCAGGGATGATTTCAA
Mouse CCR3 TCAACTTGGCAATTTCTGACCT CAGCATGGACGATAGCCAGG
Mouse CCR5 TTTTCAAGGGTCAGTTCCGAC GGAAGACCATCATGTTACCCAC
Mouse CCR6 CCTGGGCAACATTATGGTGGT CAGAACGGTAGGGTGAGGACA
Mouse CCL20 GCCTCTCGTACATACAGACGC CCAGTTCTGCTTTGGATCAGC
Mouse Tpsb1 GCCAATGACACCTACTGGATG GCTTACGGAGCTGTACTCTGA
Mouse CMA1 CGCCCCTACATGGCCTATC AGGAGGACTGTTATAGACCTTCC
Mouse ITGAM CCATGACCTTCCAAGAGAATGC ACCGGCTTGTGCTGTAGTC
Mouse ITGB2 CAGGAATGCACCAAGTACAAAGT GTCACAGCGCAAGGAGTCA
Mouse STAT1 TCACAGTGGTTCGAGCTTCAG GCAAACGAGACATCATAGGCA
Mouse STAT4 TGGCAACAATTCTGCTTCAAAAC GAGGTCCCTGGATAGGCATGT
Mouse STAT3 CAATACCATTGACCTGCCGAT GAGCGACTCAAACTGCCCT
Mouse IL20 TCTTGCCTTTGGACTGTTCTCC GTTTGCAGTAATCACACAGCTTC
Mouse IL4 GGTCTCAACCCCCAGCTAGT GCCGATGATCTCTCTCAAGTGAT
Mouse FOXP3 CCCATCCCCAGGAGTCTTG ACCATGACTAGGGGCACTGTA
Mouse TRPV1 CCACTGGTGTTGAGACGCC TCTGGGTCTTTGAACTCGCTG
Human GAPDH TGTTGCCATCAATGACCCCTT CTCCACGACGTACTCAGCG
Human TLR2 ATCCTCCAATCAGGCTTCTCT GGACAGGTCAAGGCTTTTTACA
Human TNF-α CCTCTCTCTAATCAGCCCTCTG GAGGACCTGGGAGTAGATGAG
Human CXCL10 GTGGCATTCAAGGAGTACCTC TGATGGCCTTCGATTCTGGATT
Human IL6 CCTGAACCTTCCAAAGATGGC TTCACCAGGCAAGTCTCCTCA
Human KLK5 TCAGACCCATCAACGTCTCCT GCACGCTGATATTCAAGCACT
Human Camp GGCTGGTGAAGCGGTGTAT TGGGTACAAGATTCCGCAAAAA
Human ET-1 AGAGTGTGTCTACTTCTGCCA CTTCCAAGTCCATACGGAACAA
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room temperature, and blocked them with 5% normal donkey serum
(NDS) (#017000-121, Jackson ImmunoResearch Laboratories, West
Grove, Pennsylvania) and 0.2% TritonX at room temperature for 1 h.
Then the skin sections were treated with anti-CD4 (1:100, ebioscience)
and anti-CD31 (1:100, ebioscience) antibodies at 4 °C overnight and

then stained with Alexa Fluor 488-labeled anti-goat IgG antibodies (Life
technologies) overnight. Images were captured using Zeiss Axio Scope
A1 (Zeiss, Germany).

Fig. 1. Treatment with TXA ameliorated the rosacea-like phenotype. (a) After the removal of hair, LL37 was injected intradermally into the dorsal skin to induce
rosacea-like phenotype, TXA was pretreated by gavage. The severity of the rosacea-like phenotype was assessed based on the redness score (b) and area (c). (d) H&E
for histological analysis of rosacea-like skin. (e) The expression levels of IL-6, TNF-α and MMP9 were detected by qPCR analysis. Results are representative of three
independent experiments. Data represent the means ± SEM, *P < 0.05, **P < 0.01 and ***P < 0.001.
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2.6. Real-time PCR analysis

Total RNA was isolated from HaCaT cells or skin lesion using TRIzol
reagent (Invitrogen Life Technologies, USA). 2 μg RNA was transcribed
to cDNA using PrimeScript RT reagent Kit (Takara, Shiga, Japan), and
qPCR was performed with iTaq Universal SYBR GREEN Supermix (Bio-
Rad, California, USA) on an Applied Biosystems 7500 machine (Life
Technologies). The primers were showed in Table 1.

2.7. Statistical analysis

All data are analyzed with GraphPad Prism 6 (GraphPad Software,
La Jolla, CA) and presented as means± SEM. The Student's t-test was
used for compare differences between two groups. *, P < 0.05 and **,
P < 0.01 are considered significant.

3. Results

3.1. TXA attenuated rosacea-like dermatitis LL-37-induced mice model

Clinical studies have shown that TXA is an effective therapeutic
option for rosacea patients [22,25,26]. Herein, we used a mouse model
of rosacea to investigated the pharmacologic mechanisms of TXA. As

shown in Fig. 1a, TXA significantly ameliorated LL37-induced rosacea-
like skin erythema. TXA evidently reduced the average redness score
and area by ~60.6% and ~54.6% respectively (Fig. 1b and c). The
histological analysis showed the rosacea-like dermatitis including in-
flammatory infiltration as well as vascular dysregulation in rosacea
mouse [9] were ameliorated by TXA treatment (Fig. 1d). The pro-in-
flammatory cytokines (IL-6, TNF-α) and matrix remodeling (MMP9)
were upregulated in various inflammatory diseases, recently emerging
as significant in rosacea [12]. Thus, we examined the expression levels
of IL-6, TNF-α as well as MMP9 by qPCR and showed that the upre-
gulation of IL-6, TNF-α and MMP9 expression in rosacea were atte-
nuated by TXA treatment (Fig. 1e). In conclusion, these results indicate
that TXA ameliorates the symptoms of rosacea in LL37-induced mice
model.

3.2. TXA reduced in LL37- induced immune dysregulation in rosacea-like
mice

To better understand the immunomodulatory of TXA in rosacea, the
involvements of innate immune and adopt immune were determined in
rosacea-like mice. Innate immune response appears to be important in
rosacea with the elevated expression of TLR2, KLK5 and Camp in the
lesion of rosacea patient and rosacea-like mice [9,27]. Consistent with

Fig. 2. TXA suppressed innate immune in rosacea-like mice. (a) The expression levels of TLR2, KLK5, Camp, IL-6, TNF-α and MMP9 in rosacea-like mice. The
expression levels of mast cell (b) macrophage (c) and neutrophils (d) -related genes in rosacea-like mice. Data represent the means ± SEM of three independent
experiments. *P < 0.05 and **P < 0.01.

Y. Li et al. International Immunopharmacology 67 (2019) 326–334

329



these studies, TLR2, KLK5 and Camp expression were evidently upre-
gulated in rosacea-like lesion. TXA treatment significantly attenuated
LL37-induced expression of TLR2, KLK5 and Camp (Fig. 2a). The re-
cruitment and activation of innate immune cells including mast cell,
macrophages and neutrophils were also observed in rosacea patients
[10]. To define an involvement of mast cell in rosacea, we analyzed the
mRNA expression levels of Tpsb1 and CMA1, and found the significant
upregulation of these mRNAs in rosacea mice (Fig. 2b). Moreover, the
involvement of macrophage cell was supported by identical upregula-
tion of macrophage markers (ITGB2 and ITGAM) (Fig. 2c). However,
the upregulation of mast cell and macrophage cell markers in rosacea
mice were not rescued by the treatment of TXA (Fig. 2b and c). The
qPCR analysis of CXC chemokines showed significant upregulation of

neutrophil-recruiting chemokines, including CXCL1 and CXCL5, which
were repressed by TXA treatment (Fig. 2d). These results indicate that
mast cell, macrophages and neutrophils cells contribute to rosacea-skin
inflammation, TXA reduces neutrophils cells instead of mast cells and
macrophages infiltrationin rosacea-like mice. Collectively, these results
indicate that TXA ameliorates rosacea partly by repressing innate im-
mune response.

Previous study showed that CD4+ T cells dominate the immune cell
infiltrate in rosacea [10]. To investigate the effects of TXA on adopt
immune, the CD4+ T cells were detected by immunofluorescence in
rosacea-like mice. Similar with the results in rosacea patients, the
number of CD4+ T cell was greatly increased in LL37-induced rosacea-
like dermatitis in mice (Fig. 3a). TXA treatment significantly attenuated

Fig. 3. CD4+ cells are activated in the regulation of the immune response in rosacea-like mice. (a) Expression of CD4 in skin visualized by immunofluorescence.
Green indicates CD4+ T cell. Blue indicates DAPI. Scale bars, 50 μm. Th1 (b), Th17 (c), Th2 (d) and Treg (e) cell–related genes expression significantly modulated in
rosacea-like mice. Data represent the means ± SEM. *P < 0.05, **P < 0.01 and ***P < 0.001. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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the LL37-induced CD4+ T cell infiltration (Fig. 3a). Because Th1/Th17
polarization was observed in skin lesion of rosacea patients, we
speculated that T cell polarization may also be involved in LL37-in-
duced rosacea and could be regulated by TXA [10]. Herein, we detected
the expression levels of T polarization-related gene in rosacea-like mice.
Consistent with the elevated expression of Th1 and Th17-associated
genes observed in rosacea patients, the expression levels of Th1-asso-
ciated gene (STAT1, STAT4, CCR5 and CXCL10) and Th17-associated
gene (STAT3, CCR6 and CXCL20) were significantly upregulated in
rosacea-like mice (Fig. 3b and c). The TXA treatment evidently reduced
LL37-induced Th1-associated gene (STAT1 and CXCL10) and Th17-as-
sociated gene (CXCL20). Moreover, LL37 significantly induced Th2-
associated gene (IL4 and CCR3) and Treg-associated gene (FOXP3)
(Fig. 3d and e). TXA treatment increased the LL37-induced Th2-asso-
ciated gene (IL4 and CCR3) expression, but reduced the FOXP3 ex-
pression (Fig. 3a and c). Collectively, these results indicate that TXA
represses CD4+ T cell infiltration and T cell polarization induced by
LL37, which may contribute to its anti-inflammation effect for rosacea
treatment.

3.3. TXA reduced cytokines and chemokines expression in HaCaT cells

Overexpression of innate immune-relative gene in keratinocytes acts
as a critical element in the pathogenesis of rosacea. [27]. We next ex-
amined the effects of TXA on these gene expression in LL37-induced
human keratinocyte (HaCaT) model. The significantly upregulation of
TLR2 expression was observed in LL37-induced HaCaT cells, which was

reversed by TXA treatment (Fig. 4). Moreover, KLK5 and Camp ex-
pression were slightly induced by LL37 but not affected by TXA treat-
ment (data not shown). To define the underlying anti-inflammatory
mechanism responsible for the effects of TXA on rosacea, we detected
the effect of TXA on the expression of inflammatory cytokines and
chemokines in LL37-activated HaCaT cell. It turned out that the LL37
significantly upregulated TLR2, pro-inflammatory cytokines (IL-6 and
TNFα) and Th17 chemokines (CCL10) expression, all of which except
IL-6 were reversed by TXA treatment (Fig. 4). Collectively, these find-
ings support that TXA represses the production of TLR2, cytokines and
chemokines in keratinocytes primed by LL37.

3.4. TXA reduced angiogenesis and repressed VEGF expression

To confirm the repression of TXA on the dysregulation of neuro-
vascular in rosacea-like mice, we performed immuno-staining of CD31
(a marker of blood vessels) and qPCR of mRNA expression of VEGF and
TRPV1. Consistent with the previous results, LL37 significantly induced
angiogenesis with the increase number of CD31 microvessels and VEGF
expression (Fig. 5a). Treatment with TXA acutely abrogated the an-
giogenesis effects of LL37 in the dermis (Fig. 5a and b). In addition,
although LL37 upregulated the expression of TRPV1, TRPV1 expression
was not significantly changed by TXA treatment (Fig. 5c). These results
indicate that TXA represses angiogenesis induced by LL37 in rosacea-
like mice. Next, we tried to detected the effects of LL37 and TXA on
HUVEC. As shown in Fig. 5d, TXA treatment significantly repressed the
expression levels of endothelin-1 (ET1) and TNFα, however, LL37

Fig. 4. TXA reversed inflammatory cytokines and chemokines expression in HaCaT cells. Data represent the means ± SEM. *P < 0.05 and **P < 0.01.
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treatment and LL37+TXA treatment did not affect the expression le-
vels of ET1 and TNFα. Moreover, TXA, LL37 and LL37+TXA treatment
did not affect the expression level of VEGF. Moreover, TXA, LL37 and
LL37+TXA treatment did not affect the expression level of VEGF.

4. Discussion

Rosacea is a chronic inflammatory skin disease that affects ap-
proximately 3% of the world's population [28]. Although the exact
pathogenesis of rosacea is limited, it is widely accepted that rosacea
was attribute to immune, vascular, and nervous dysfunction [12]. TXA
is a potent antifibrinolytic agent and wildly used for surgical patients
with excessive bleeding [29]. Recent studies have described TXA as
treatment option available for rosacea [22]. However, the pharmaco-
logic mechanism has not been elucidated. In this study, we have pro-
vided the first evidence that TXA treatment ameliorated the rosacea
symptoms via suppressing inflammation and angiogenesis.

It is well known that immune response is involved in rosacea pa-
thogenesis. Innate immune was reported to play a critical role on the
initiation of rosacea [9]. Environmental stimuli of TLR2 activation in

rosacea induces KLK5 expression and subsequently results in accumu-
lation of LL37, which acts as a critical element in the pathogenesis of
rosacea [30]. Azelaic acid is a beneficial agent for rosacea treatment
because of the suppression on innate immune [30]. Here, we showed
that TXA evidently reduced LL37-induced expression of KLK5, Camp
and TLR2. In addition, for the inflammatory infiltration in rosacea [10],
our data showed that the neutrophil infiltration was reduced (Fig. 1d)
and the expression of neutrophil-recruiting chemokines were repressed
by TXA treatment in rosacea-like mice (Fig. 2d). Consistent with these
results, the reduced neutrophil infiltration by TXA was also observed in
acute lung injury [31]. Although mast cell and macrophages were re-
ported to play important role in rosacea, TXA did not affect the in-
filtration of mast cell and macrophages. The increased inflammatory
cytokines in rosacea including TNFα and IL-6 [12] were also reduced by
TXA, which was consistent with the anti-inflammatory role of TXA in
previous studies [32,33]. In addition, the adaptive immune system is
significantly activated in rosacea with the increase of CD4+ T cell as
well as the upregulation of Th1 and Th17 cytokines and chemokine in
rosacea lesion [10,12]. In the current study, the elevated Th1 and Th17
cytokines and chemokines induced by LL37 were reduced by TXA in

Fig. 5. TXA reduced angiogenesis in LL-37- induced rosacea-like mice. (a) Expression of CD31 in skin visualized by immunofluorescence. Green indicates CD31 cell.
Blue indicates DAPI. Scale bars, 50 μm. (b) VEGF expression in rosacea-like mice. (c) TRPV1 expression in rosacea-like mice. (d) The effects of LL37 and TXA on the
expression levels of ET1, TNFα and VEGF in HUVEC. Data represent the means ± SEM.*P < 0.05, **P < 0.01 and ***P < 0.001. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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rosacea-like mice. Although no involvement of Th2 and Treg cells was
reported in rosacea [10], the gene expression of cytokines and che-
mokines of Th2 and Treg cells were increased in rosacea-like mice, and
Th2 cytokines and chemokines were further induced by TXA. Together,
our studies indicated the anti-inflammation and immunomodulatory
properties of TXA account for its therapeutic effects on rosacea.

Keratinocytes was reported to produce inflammatory molecules in-
cluding anti-microbial peptides, cytokines as well as chemokines in
response to environmental stimuli [34–36], which is involved in the
progression of various inflammatory skin diseases, including psoriasis
[37], atopic dermatitis [38], vitiligo [39], as well as lichen planus [40].
Recent study demonstrated that LL37, an antimicrobial peptide pro-
duced by keratinocyte, induced chemokines expression and contributes
to inflammatory cell infiltration [41]. In this study, LL37 significantly
upregulated TLR2, pro-inflammatory cytokines (IL-6 and TNFα) and
Th17 chemokines (CCL10) expression, and the expression of TLR2,
TNFα and CCL10 were suppressed by TXA treatment (Fig. 4). These
findings support that TXA represses the production of TLR2, cytokines
and chemokines in keratinocytes primed by LL37 and further reduces
the T cell infiltration induced by keratinocytes.

It is well established that rosacea is a vascular and neuronal dys-
function skin disease, with the pathophysiology character of dilated
blood vessels and angiogenesis [11,42]. The increase expression levels
of VEGF [13] and TRPV1 were also observed in rosacea [11,13]. In this
study, an increase of the number of CD31 microvessels induced by LL37
was decreased by TXA treatment. Similar to previous observations that
TXA reduced the VEGF expression in Ultraviolet A-induced skin cancer
[43], and TXA also attenuated the VEGF expression induced by LL37 in
rosacea-like mice. Although the expression levels of ET1 and TNFα
were significantly repressed by TXA, these gene expression was not
affected by LL37 and LL37+TXA treatment. Moreover, the expression
level of VEGF was also not affected by TXA, LL37 and LL37+TXA
treatment. A recent study demonstrates that TXA inhibits the activity of
plasmin, a serine protease which plays a critical role in angiogenesis
[31], we speculated that TXA could inhibit angiogenesis partly by
suppressing serine proteases activity in rosacea.

In summary, we investigated the role and mechanism of TXA on
rosacea and observed that TXA ameliorated rosacea symptoms by reg-
ulating immune response and angiogenesis. This study provides the first
experimental basis for TXA treatment on rosacea. The exact mechan-
isms underlying TXA-mediated anti-inflammation and anti-angiogen-
esis remain to be defined.
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TXA Tranexamic acid
ETR erythematotelangiectatic rosacea
PPR papulopustular rosacea
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TLR2 Toll-like receptor 2
Camp cathelicidin antimicrobial peptide
KLK5 kallikrein 5
VEGF vascular endothelial growth factor
NDS normal donkey serum
ET1 endothelin-1
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