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Abstract

Genomic characterization has begun to redefine diagnostic classifications of cancers. However, it remains a
challenge to infer disease phenotypes from genomic alterations alone. To help realize the promise of genomics, we
have performed a quantitative proteomics investigation using Stable Isotope Labeling by Amino Acids in Cell
Culture (SILAC) and 41 tissue samples spanning the 4 genomically based subgroups of medulloblastoma and
control cerebellum. We have identified and quantitated thousands of proteins across these groups and find that we
are able to recapitulate the genomic subgroups based upon subgroup restricted and differentially abundant
proteins while also identifying subgroup specific protein isoforms. Integrating our proteomic measurements with
genomic data, we calculate a poor correlation between mRNA and protein abundance. Using EPIC 850 k
methylation array data on the same tissues, we also investigate the influence of copy number alterations and DNA
methylation on the proteome in an attempt to characterize the impact of these genetic features on the proteome.
Reciprocally, we are able to use the proteome to identify which genomic alterations result in altered protein
abundance and thus are most likely to impact biology. Finally, we are able to assemble protein-based pathways
yielding potential avenues for clinical intervention. From these, we validate the EIF4F cap-dependent translation
pathway as a novel druggable pathway in medulloblastoma. Thus, quantitative proteomics complements genomic
platforms to yield a more complete understanding of functional tumor biology and identify novel therapeutic
targets for medulloblastoma.
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Introduction
In a series of landmark papers, microarray transcriptome
characterization subdivided the malignant childhood
brain tumor medulloblastoma into at least four distinct
entities [11, 31, 32, 49, 66]. Chromosomal copy number
alterations, clinical characteristics such as age and sur-
vival, and methylation array data correlated well with the
transcriptomic classification, reinforcing the identity of

distinct subgroups of the disease [50]. However, the real
goal of more informative, biologically based tumor tax-
onomy is to drive discovery of new therapeutic interven-
tions. The WNT and SHH pathways drive their
eponymous subgroups and their activity is enhanced by
mutations in key elements of the pathways. But the
other two subgroups, 3 and 4, do not harbor mutations
at the same frequency and present a greater challenge
when trying to discern their biological determinants
from gene expression signatures alone [48]. Largely, this
difficulty emanates from the central assumption of tran-
scriptomics, that a gene’s expression level predicts its
contribution to cell biology. We have therefore applied
quantitative proteomics in an attempt to replace this
assumption with knowledge about the proteome, as
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proteins more directly determine the functional state of
the cell.
The work of the cell is performed largely by proteins.

While protein production begins with gene transcripts, a
growing literature has demonstrated that transcript
abundance does not predict protein quantity for a large
majority of genes [21, 24, 77]. A large number of
post-transcriptional regulatory mechanisms from interfer-
ing RNAs to selective RNA binding proteins affect differ-
ential translation in response to a wide range of cellular
conditions [63]. The first paper published from the
CPTAC (Clinical Proteomic Tumor Analysis Consortium)
initiative showed a correlation coefficient of 0.23 between
transcript and protein abundance [77] and subsequent
publications have replicated this experience [45, 78]. It is
also becoming increasingly recognized that cancer cells
utilize alternative pathways of translation initiation
that prioritize proteins important in the cellular re-
sponse to stress [41, 60, 63]. Thus, a true picture of
the cancer cells’ functional state must be based not only
upon genomic features but also include the protein com-
plement if we are to decipher its biology. Further, and
most importantly, in order to interfere with that biology,
proteins remain the most actionable targets of pharma-
ceutical and immunotherapeutic intervention.
While proteomics can point the way forward toward

translational progress, it can also provide a valuable lens
through which to view cancer genomics. Genomic tech-
nology generates rich datasets with little inherent means
to determine the relative importance of each individual
finding. In contrast, clinical proteomics data is much less
complete but is, by its nature, more representative of
cellular biology. By employing the axiom that for a gen-
omic event to influence phenotype it must be translated
into the proteome, one can apply a filter to help discern
signal from noise in the massive datasets produced by
genomics platforms. In this way, these two areas of study
can complement one another. Here, we present the first
proteogenomic characterization of pediatric medulloblas-
toma and demonstrate the unique contributions to bio-
logic understanding offered by quantitative proteomics.

Results
Quantitative proteomics of medulloblastoma
The ability to simultaneously identify and quantitate
proteins in a given tissue is critical to an attempt to
characterize the proteome of a tumor. For this purpose,
we applied Stable Isotope Labeling by Amino acids in
Cell culture (SILAC) [12, 20] to clinical samples of 36
medulloblastoma tumors and 5 control samples of nor-
mal cerebellum (Additional file 1: Table S1). For our
studies, we created a pooled super-SILAC reference
atlas, termed the Labeled Atlas of Medulloblastoma Pro-
teins (LAMP), containing labeled proteins from 8

primary and established cell lines chosen to represent
the breadth of medulloblastoma across the four genomic
subgroups (Methods). The LAMP was then spiked at a
ratio of 1:1 into tumor tissue protein lysates and liquid
chromatography-tandem mass spectrometry (LC-MS/
MS) was performed (Fig. 1a and Methods). We identi-
fied a total of 54,403 unique peptides among the 41 sam-
ples, corresponding to 4,987,397 spectra in an assembly
of 2787 protein groups with a 5% protein false discovery
rate (Methods). To facilitate integration with genomic
data, we assigned the same quantification value to each
protein belonging to the same protein group. In this
way, we were able to relatively quantitate 2901 proteins
across the 41 samples. 1023 (37%) of the proteins were
common to both medulloblastoma and control cerebel-
lum while 408 (15%) proteins were shared by all medul-
loblastoma subgroups. Group 3 exhibited the most
unique proteins (11.5%) and groups 3 and 4 had the
highest number of shared proteins of any 2 subgroups
(Fig. 1b). These data indicate that the LAMP was cap-
able of yielding quantitative protein data across the four
genomic subgroups of medulloblastoma.

Correlation between mRNA and protein abundance.
To better understand the extent to which transcript level
predicts protein abundance, we calculated the concord-
ance between mRNA and protein abundance for the
1240 individual genes that had suitable mRNA and pro-
tein measurements in 35 matched tumor samples
(Methods and Additional file 2: Table S2). Although 87%
of the genes had a positive mRNA-protein correlation,
only 45% had statistically significant correlations
(p-value < 0.05) (Fig. 2a and Additional file 2: Table S2).
The average Spearman’s correlation between mRNA and
protein variation was 0.31, comparable to that reported
previously in colorectal, breast and ovarian cancer
[45, 77, 78]. A similar analysis for each medulloblas-
toma subgroup showed that group 4 tumors demonstrate
the lowest concordance (Fig. 2b and Additional file 3: Fig-
ure S1b), with a Spearman correlation mean of 0.16 com-
pared to 0.30, 0.24, and 0.21 for group 3, SHH, and WNT
respectively (four group comparison, Kruskal-Wallis test,
p-value < 2.2e− 16).
To test whether mRNA-protein correlation is related

to the biological function of the protein, we performed
KEGG Pathways enrichment analysis. We found that gene/
protein pairs with higher correlation (greater than the Upper
Quartile Q3) were enriched in metabolic and ribosomal
pathways, whereas there was a low correlation for genes/pro-
teins enriched in proteasome, spliceosome, oxidative phos-
phorylation, and RNA transport pathways (Fig. 2c).
Among other factors such as secondary mRNA struc-

ture, codon bias, ribosomal density, regulatory proteins
and RNAs [40], the half-life of proteins and mRNA is a
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major factor influencing mRNA-protein correlation.
From studies on mammalian cells, it is reported that
proteins are 5 times more stable and 900 times more
abundant than mRNA while spanning a lower dynamic
range [58]. To analyze the effect of mRNA and protein
half-lives on mRNA-protein correlation, we used
half-life data generated from mammalian cells by parallel
metabolic pulse labeling [58]. We found that genes
with stable protein products tend to have higher
mRNA-protein correlation than those with unstable pro-
teins, however we found no differences between stable

and unstable mRNA (p-values 6.4e− 06 and 0.81 respect-
ively, two-sided Wilcoxon rank sum test) (Fig. 2d). This
finding is similar to colon cancer in which the
protein-mRNA correlation was found to be highest when
both mRNAs and proteins were stable [77]. These results
demonstrate that mRNA transcript abundance is a poor
predictor of protein complement and that both the bio-
logical function of proteins and their rate of turnover
likely impact mRNA-protein correlation. Thus, extreme
caution should be exercised when predicting biologic
phenotype from gene expression data alone.

a b

Fig. 1 SILAC proteomics workflow and output. a The Labeled Atlas of Medulloblastoma Proteins (LAMP) was generated by combining equal
amounts of isotopically labeled (Lysine-13C6, and Ariginine13C6) proteins from 8 primary and established cell lines, representing the four primary
medulloblastoma subgroups. Protein lysates from tissues were spiked 1:1 with the SILAC reference atlas (LAMP). The resulting protein lysates were
fractionated on a 1-D gel in triplicate, trypsin digested, and further fractionated by HPLC in line with the MS/MS analysis. The spectra were then
searched against the Uniprot or custom protein databases to identify peptide sequences and their originating proteins. Protein quantitation is
derived from the ratio of the light tissue peptides relative to the heavy SILAC reference peptides. The proteomic data was functionally integrated
with tumor-matched transcriptomic, epigenomic, and genomic data. b Venn diagram of quantified proteins along the 4 medulloblastoma
subgroups and cerebellum tissues. A total of 2901 proteins were quantified
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Effect of methylation and copy number on protein
expression.
To study the effect of DNA methylation on protein ex-
pression, we calculated the differentially methylated re-
gions (DMR) by comparing each medulloblastoma
subgroup to control cerebellum samples. Differentially
expressed proteins and genes were calculated in the same
way. We found that the number of differentially expressed
genes (mRNA) associated with a DMR was higher than
the number of differentially expressed proteins associated
with a DMR across all subgroups (Additional file 4: Figure
S2a). We then analyzed genes with an associated DMR to
correlate loss/gain of methylation with mRNA or protein
expression/repression respectively. We found that for all

subgroups both mRNA and protein expression showed
odds ratios greater than 1, however only the mRNA corre-
lations were significant (p-value < 0.01, Fisher exact test)
(Additional file 4: Figure S2b). Together, these results sug-
gest that there is a poor correlation between epigenetic
programs, evidenced by DNA methylation, and protein
quantity, indicating that additional regulation at the level
of translation and/or protein stability governs protein
abundance.
To analyze the impact of copy number alterations

(CNA) on protein and mRNA expression, we calculated
the correlation between copy number alterations, mRNA
and protein quantity for 1147 genes. Probability density
showed that although 81 and 69% of the genes showed

c

a b

d

Fig. 2 Correlation between mRNA and protein abundance. a mRNA and protein were positively correlated for most (87%) pairs of mRNA-proteins
with a mean Spearman’s correlation of 0.31, but only 45% showed a significant correlation (p < 0.05). b Density plot of Spearman’s correlation by
medulloblastoma subgroup; a significantly lower Spearman correlation mean was found in Group 4, 0.16 compared to 0.30, 0.24 and 0.21 in
Group3, SHH and WNT respectively. c Different biological processes displayed differences in mRNA and protein correlation. Genes encoding
ribosomal and metabolic functions showed higher mRNA-protein correlation than those involved in the spliceosome or proteasome. d
Relationship between mRNA-protein correlation and the stability of the molecules. Human mRNA and proteins are divided into stable or unstable
and the distribution of mRNA-protein Spearman’s correlation is represented by box-plots. Unstable proteins have significantly lower correlations
than stable ones; however, no differences were found for mRNA. p-values were calculated using the two-sided Wilcoxon rank sum test
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positive CNA-mRNA and CNA-protein correlation re-
spectively, only 18 and 13% had statistically significant
Spearman’s correlations (p-value < 0.05). Among the
genes with significantly correlated CNA-mRNA and
CNA-protein, 98 and 90% showed a positive correlation
(Additional file 5: Figure S3a and Additional file 6: Table
S3). These results show greater correlation between copy
number and mRNA than CNA-protein as has also been
shown in colon and rectal cancer [77]. Representation of
significantly correlated genes across the chromosomes
revealed differences between CNA-mRNA and
CNA-protein correlation. While chromosome bands 6q,
8q, 10q, 11p, 14q, 17p and 17q present the highest fre-
quency of significant CNA-mRNA correlations, only
chromosome bands 17q and 14q were found to correlate
at the protein level (Fig. 3 and Additional file 5: Figure
S3b). Some of these chromosome bands correspond to
well-known chromosome alterations in medulloblastoma
tumors, such as monosomy 6 in WNT subgroup tumors,
deletions of 10q and 11p in group 3 tumors, and iso-
chromy of chromosome 17 in group 4 tumors [50]. The
gain of chromosome 17q, a frequent event in group 3
and 4 tumors that has been shown to be prognostic [61],
was associated with the largest number of significant
copy number/mRNA/protein correlations. Among the
56 genes in the 17q region with quantifiable protein

measurements, 18 (32%) showed significant CNA-protein
alterations, while only 10 (18%) showed significant
CNA-mRNA correlation (p < 0.05, Spearman’s correlation,
Additional file 6: TableS3).
Significant CNA-protein correlations identify amplified

sequences that translate to high protein abundance illus-
trating that proteomic measurements can help to
prioritize genes in amplified regions for further examin-
ation [77]. Among the 18 genes with significant
CNA-protein correlation in chromosome arm 17q, we
found two genes that have been previously associated with
medulloblastoma biology, LASP1 andGRB2 (Additional file 7:
Figure S4a) [27, 67]. Other interesting candidates included
KPNB1 and ARHGDIA, both correlating between CNA and
protein but not with mRNA level (Additional file 7: Figure
S4a). KPNB1 is a nuclear transport receptor, which regulates
glioma proliferation via the Wnt/β-Catenin pathway [39].
ARHGDIA, encoding a Rho GDP-dissociation inhibitor, is
implicated in cell migration and is upregulated in sev-
eral cancers including glioma [18]. Interestingly, the
ARHGDIA protein is elevated in group 4 tumors
where isochrome 17q is frequent (Additional file 7:
Figure S4b). In summary, we found more correlations
between CNA and mRNA compared with protein
levels indicating that in many cases, CNA-driven
mRNA transcript alterations do not translate to the

Fig. 3 Effect of copy number alteration on MRNA and protein abundance. Frequency of significant correlations between CNA and mRNA (upper
panel) or protein (middle panel) across all chromosomes. The heatmap (lower panel) indicates the copy number for each sample

Rivero-Hinojosa et al. Acta Neuropathologica Communications  (2018) 6:48 Page 5 of 19



abundance of their corresponding protein [77]. Add-
itionally, we have found a high frequency of positive
correlations between copy number and protein expression
in chromosome arm 17q genes, reinforcing this alteration
as an important factor in medulloblastoma biology. When
chromosomal alterations involve many genes, proteomics
can be instrumental in discerning which genes are most
likely to project that alteration’s impact onto cellular
biology.

Proteomic subgroup classification recapitulates genomic
subgroups using different data elements
Genomic subgrouping of medulloblastoma has led to
many new insights into the cells of origin, active path-
ways, and varying outcomes to traditional therapies.
However, it has proven difficult to translate these find-
ings into new subgroup specific therapies, something for
which proteomics may be better suited. To identify mo-
lecular subtypes of medulloblastoma using proteomic
data, we utilized an unsupervised clustering algorithm
based on non-negative matrix factorization (NMF) [16].
When applied to our proteomic expression data consist-
ing of 36 primary medulloblastoma tumors and five
healthy cerebellar tissues, the optimal number of clusters
in our dataset was determined to be 6 (Fig. 4a). These
represent five medulloblastoma subgroups plus one of
cerebellum, which approximate the genomic subgroup
assignments by nanostring and methylation array based
methods [28, 29, 57] (Fig. 4b). The fifth medulloblas-
toma group contains only 2 tumors, genomically de-
noted as group 3 and 4. Annotation with DNA
copy-number alterations showed that the proteomic sub-
groups also correlate to high frequency copy number al-
terations in the same way that the genomic subgroups
do [50]. For example, WNT tumors harbor monosomy
6, isolated 17p losses are confined to group3 and i17q is
found only in group 4 tumors. While recent analyses of
genomic and epigenomic data utilizing large numbers of
tumor samples have further subdivided the four main
genomic subgroups into 12 subtypes, proteomic analysis
with this limited number of samples continues to sup-
port the four main genomic subgroups [7].
While the ability to recapitulate the genomic sub-

groups from proteomic data supports the validity of the
subgroups, it is important to note that the proteome
classifies tumors based upon different data points. To
test this, we attempted to cluster the tumors using the
transcript abundance of each of the genes coding for the
proteins used in the proteomic classification. That data-
set was unable to recreate the subgroups indicating that
the proteomic classification draws from a different data-
set (Additional file 8: Figure S5). In general, the genes
that differentiate between the subgroups have not
yielded therapeutic targets, limiting the translational

impact of genomic subgrouping. Therefore, the ability of
proteomics to differentiate the subgroups using different
data points provides an additional translational
opportunity.

Identification of subgroup enriched protein isoforms from
unique peptides
The manually annotated Swiss-Prot Uniprot database
does not contain gene isoforms and thus one peptide
can map to multiple proteins. Although this database is
effective for establishing the general proteome of tu-
mors, it is not sufficient to quantify differences between
isoforms. This is a missed opportunity as cancer related
isoform variants may serve as biomarkers or therapeutic
targets. In order to detect tumor and subgroup specific
isoforms, we constructed a tumor-specific protein data-
base using publicly available RNA-seq data from 167
MBs. The spectral data were searched against this cus-
tomized database and differentially expressed isoforms
were identified (Methods). There were relatively few
genes with isoforms in different protein groups (36
genes in 72 protein groups); of these, 23 protein groups
were significantly differentially expressed (Kruskal-Wal-
lis rank-sum test p < 0.05, Additional file 9: TableS4).
The most significant were isoforms of the genes CALD1,
HMGA1, TMP4, SPTAN1, MCM3, and EEF1D (Fig. 5
and Additional file 10: Figure S6). Caldesmon 1
(CALD1) encodes a calmodulin- and actin-binding pro-
tein that plays an essential role in the regulation of
smooth muscle and non-muscle contraction. The
CALD1 gene consists of at least 15 exons and gives rise
to two major classes of isoforms: high molecular weight
caldesmon (h-CaD) and low molecular weight caldes-
mon (l-CaD) isoforms. l-CaD comprises four different
splicing variants: WI-38 l-CaDs I and II, and Hela
l-CaDs I and II [25, 26, 30, 52] (Fig. 5a). h-CaDs are re-
stricted to fully differentiated smooth muscle cells and
regulate muscle tone [26]. l-CaDs are ubiquitously
expressed in various cells including dedifferentiated
SMCs and they play a role in the regulation of cell con-
tractility, adhesion-dependent signaling, cytoskeletal
organization, granule movement, hormone secretion and
the reorganization of microfilaments during mitosis
[6, 26, 75]. We detected WI-38 l-CaD II (Protein group
A), h-CaD and WI-38 l-CaD I (Protein group B) isoforms
in all meduloblastoma subgroups, but with higher expres-
sion in WNT tumors. Interestingly, the HeLa-type caldes-
mon (protein Group C) were only detected in the WNT
subgroup (Fig. 5a). Analysis of mRNA expression of
CALD1 isoforms in RNA-seq of 167 tumors confirm these
results; the highest expression was found for HeLa l-CaD
II (transcript NM_033140), being highly expressed in the
WNT subgroup (Additional file 11: Figure S7c). Analysis
of publicly available H3K27 acetylation marks (a mark of

Rivero-Hinojosa et al. Acta Neuropathologica Communications  (2018) 6:48 Page 6 of 19



active transcription) in MB tumors [37] validated that the
HeLa-type caldesmon isoforms are regulated at the tran-
scriptional level, not due to an alternative splicing mech-
anism, using an alternative promoter which is especially
active in the WNT subgroup compared to the other MB
subgroups (Additional file 11: Figure S7b). Interestingly,
HeLa-type Caldesmon is located in tumor blood vessels
and implicated in the neovascularization of glioma and

other tumors [79, 80]. These results are consistent with
the observation that WNT tumors stimulate more
neo-vascularization compared to the other subgroups
[54]. These results together suggest a role for the HeLa
l-CaD II isoform in MB angiogenesis.
Another interesting set of isoforms are from the high

mobility group AT-hook 1 (HMGA1) gene. We detected
significantly higher expression of HMGA1 isoforms a

b

a

Fig. 4 Proteomic subgroup classification recapitulates genomic subgroups. Non-negative matrix factorization consensus clustering of protein
expression data from 36 primary medulloblastoma and five normal cerebellar tissues reveals six (Cophenetic Coefficient, k = 6) subgroups. This
result largely recapitulates the subgroups found by genomic data
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and b in Group 3 MB (Fig. 5b). HMGA1 is a DNA bind-
ing protein commonly overexpressed in human cancers
[1, 2, 8, 10, 56]. Previous studies have reported that
HMGA1 is expressed in MB tumors and cell lines where
it controls growth, migration and invasion [34, 36]. Here
we detected both HMGA1 isoforms significantly
expressed in Group 3 MB tumors (Kruskal-Wallis
rank-sum test p-value = 0.00072 and 0.0178 for isoforms
a and b respectively) (Fig. 5b). A significant positive cor-
relation between HMGA1 mRNA and protein was also
found (Spearman correlation coefficient = 0.478, Add-
itional file 2: Table S2). These findings were confirmed
by RNA-seq (Additional file 12: Figure S8a). Addition-
ally, western blot analysis of the four medulloblastoma
groups showed the two HMGA1 isoforms expressed at
higher levels in group 3 medulloblastoma (Add-
itional file 12: Figure S8b). Interestingly, the level of total
HMGA1 expression is also correlated with poor survival
in Group 3 patients (Additional file 12: Figure S8c). Fi-
nally, we have correlated HMGA1 expression with MYC
expression (Spearman correlation coefficient 0.83) in

medulloblastoma group 3 tumors (Additional file 12: Figure
S8d), as previously described [73]. These results highlight
the potential of proteomics to identify medulloblastoma
specific translated isoforms and thereby provide biological
insights unavailable from genomic data alone.

Proteome based functional network analysis
demonstrates the centrality of the MYC program
In order to identify proteins that are enriched in each of
the four medulloblastoma genomic subgroups, protein
quantities were determined relative to control cerebel-
lum and then compared between the subgroups (Add-
itional file 13: Table S5 and Additional file 14: TableS6).
To analyze the potential for these differentially abundant
proteins to inform about subgroup specific biology, we
performed Ingenuity Pathway Analysis (IPA) (QIAGEN
Inc., https://www.qiagenbioinformatics.com/products/
ingenuity-pathway-analysis) [33] using as input the lists
of proteins enriched for each subgroup. In this way, we
sought to compare protein networks between genomic
subgroups using IPA to predict the upstream regulators

a

b

Fig. 5 CALD1 and HMGA1 isoforms in medulloblastoma tumors. Schematic representation of CALD1 (a) and HMGA1 (b) isoforms. The boxplots
show the quantification of each protein isoform group across all medulloblastoma subgroups. p-values for differences between subgroups were
calculated based on the Kruskal-Wallis rank-sum test. A protein group is defined as the group of isoforms that are indistinguishable due to the
position of identified peptides
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of the differentially expressed proteins (Additional file 15:
Table S7). Notable findings include regulators with shared
roles in multiple subgroups: the receptor tyrosine kinases
EGFR in all subgroups and ERBB2 in WNT, group 3 and
group4; the oncoproteins HIF-1α and MYC in SHH, group
3 and group 4 tumors; the transcriptional activator BRD4
in group 3 and group 4 tumors; and the tumor suppressor
mir-122 in group 3, group 4 and SHH tumors (Fig. 6).
HIF-1α has been implicated in the maintenance of Notch
signaling resulting in the maintenance of neoplastic neural
stem cell cells [55, 65]. Transactivated by HIF-1α, MYC is a
prominent biological determinant in SHH (MYCN) and
group 3 (MYCC) medulloblastoma but has not been widely
implicated in group 4 biology, although MYCN amplifica-
tions are infrequently observed [48]. BRD4 facilitates
MYC-mediated transcriptional activation and as such has
been explored as a potential therapeutic target in MYC
driven medulloblastoma [3, 69]. Linked to the HIF-1α/

MYC/BRD4 axis via HIF1α are the ErbB family members
EGFR and ERBB2. ERBB2 has been found to be expressed
in a large proportion of medulloblastoma and to be prog-
nostic, however attempts to target it therapeutically have
not been successful in the relapsed setting [17, 22]. EGFR is
not as well studied in medulloblastoma though there is data
to support a synergism between EGFR and Hedgehog sig-
naling in SHH tumors resulting in stabilization of the Gli1
protein [23]. mir-122 is a tumor suppressor that is directly
inhibited by MYCC and that, in turn, represses MYCC via
its repression of E2f1 and Tfdp2 [71]. It has a
well-established role in hepatocellular carcinoma (HCC)
where it is down-regulated. Mir-122 knock-out mouse
models form HCC and restoration of its expression inhibits
tumor development [47]. These data support investigation
of mir-122’s role in medulloblastoma.
A potentially confounding issue with normalizing pro-

tein quantities back to cerebellum is the tendency to

Fig. 6 Medulloblastoma subgroup specific upstream regulators. Top upstream regulators predicted by Ingenuity pathway analysis from
downstream proteins differentially expressed by subgroup. Upstream regulators are predicted to be active if colored red and inhibited if
colored green
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overemphasize proteins associated with cellular prolifer-
ation rather than individual subgroup biology. Despite
that concern, we also found subgroup restricted up-
stream regulators including the inhibitory axis of
SYNV1-p53 in SHH [76]. This is noteworthy as SHH is
the subgroup in which the majority of p53 mutations
occur [48]. We also identify the cell adhesion regulator
CD44 in group 4 [46], the tumor suppressor BRCA1 in
WNT and the anti-apoptotic MKL1 in group 3 tumors.
CD44 is a cancer stem cell marker that plays a role in
tumor metastasis and progression while regulating mul-
tiple signaling networks depending upon the isoforms
expressed [51]. Wild-type BRCA1 has been demon-
strated to increase the nuclear form of beta-catenin,
thereby enhancing the downstream activity of the WNT
pathway [35]. MKL1 is part of the RBM15-MKL1 fusion
resulting in activation of a Notch pathway transcrip-
tional activator giving rise to acute megakaryoblastic
leukemia [43]. It is also a transcriptional modulator in
its own right associated with proliferation and invasion
in lung and breast cancer [9]. Thus, the top upstream
regulators predicted by IPA based on the differentially
abundant proteome constitute proteins with known roles
in cancer.
Next, IPA assembled the most significant interaction

pathways based upon the degree of representation of
pathway molecules by differentially expressed proteins
(Additional file 16: Figure S9, Additional file 17: Table
S8). Pathways previously reported to be important in
medulloblastoma were identified including the Ephrin B,
mTOR, and integrin signaling pathways [4, 13, 15, 42, 74].
Elements of DNA damage repair were also represented in-
cluding G2-M checkpoint control and ATM signaling.
Metabolism was highlighted by the TCA cycle and oxida-
tive phosphorylation pathways. In keeping with the focus

of this report is the prominence of protein synthesis and
regulation pathways including the mTOR signaling, pro-
tein ubiquitination, EIF2 and EIF4 pathways. In order to
demonstrate the potential of proteomics to identify trans-
lational opportunities, we chose to validate the importance
of EIF4F cap-dependent protein translation to medullo-
blastoma cell survival.

EIF4F pharmacologic inhibition
Cancer cells proliferate despite conditions of stress in-
duced by hypoxia and nutrient deprivation. Under stress
conditions, the EIF2 pathway is downregulated and the
protein translation necessary for cell proliferation is
maintained through cap-dependent EIF4F complex
translation [64]. Reliance upon robust protein translation
has been found across many types of cancer and inhib-
ition of the eIF4F complex is an active area of thera-
peutic development [38, 62]. We treated 3 different
medulloblastoma cell lines (MB002, MB004, D556) with
2 different compounds (4EGI-1 and 4E1RCat) that in-
hibit the association of eIF4E and eIF4G, thus blocking
the formation of the eIF4F complex. We found concen-
tration dependent cell death for all cell lines using both
compounds (Additional file 18: Figure S10a). In order to
approximate the cellular stress inherent in the tumor
microenvironment that gives rise to EIF4F dependent
protein translation, we compared sensitivity to the EIF4F
inhibitors under modest nutrient deprivation using 2%
vs. 10% FCS and found enhanced sensitivity at reduced
inhibitor doses (Fig. 7a and Additional file 18: Figure
S10b). Next, we treated medulloblastoma and normal
human HA-C astrocytes in 2% FCS with toxic concen-
trations of both compounds and observed a significant
disparity in cell death between normal and tumor cells
(Fig. 7b and Additional file 18: Figure S10c). Given the

a b c

Fig. 7 EIF4F inhibitors reduce medulloblastoma cell viability. D556 at normal (10%FBS) and nutrient deprivation (2% FBS) conditions (a) and D556
and primary human cerebellar astrocytes cells (b) were treated with the EIF4F inhibitor 4EGI-1 for 72 h at the indicated concentrations. The 4EGI-1
toxic concentration in medulloblastoma D556 cells is considerably lower than in normal cerebellar astrocytes. Error bars indicate the standard
deviation. c Treatment of D556 and primary human cerebellar astrocytes cells with 4EGI-1 in combination with cisplatin
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infeasibility of obtaining medulloblastoma cells of origin,
astrocytes were chosen as they are the most abundant
proliferative cell type in the CNS. Treatment with the
EIF4F inhibitor 4EGI-1significantly increased the efficacy
of cisplatin chemotherapy, a cornerstone of conventional
medulloblastoma treatment, while sparing normal astro-
cytes (Student’s T-test p < 0.002, Fig. 7c). These data es-
tablish the reliance of medulloblastoma cells in vitro
upon cap-dependent translation, a sensitivity that is not
shared by normal human astrocytes and supports the
further pre-clinical exploration of EIF4F inhibition as a
treatment approach with a high therapeutic index.

Discussion
Genomic characterization of tumors using large sample
sets has yielded an unprecedented ability to discriminate
subclasses of disease based upon transcriptional pro-
grams. While mutations have proven to be the most ac-
tionable of the genomic aberrations, pediatric cancers in
general have very low mutational burdens. The broad
and rich datasets yielded by genomic platforms are ideal
for developing a deep understanding of what divides dis-
eases into subgroups. However this endeavor, by its very
nature, handicaps efforts to translate genomic findings
into therapeutic tools for two reasons. First, focusing on
the characteristics that segregate tumors from one an-
other necessarily yields ever finer distinctions. Targeting
these differences may yield precise tools that neverthe-
less fail to address the foundational biology essential to
cancer cell survival. Secondly, creating ever smaller pa-
tient groups makes it unlikely that industry will create
therapeutic agents for them or that subject accrual will
allow the testing of any such agent. In contrast, proteo-
mics measures the molecules most proximate to cellular
phenotype and downstream of the many regulatory pro-
cesses that govern the transition from genomic instruc-
tion to gene product. As such, it offers the potential to
identify those aspects of cancer biology shared between
tumor subgroups and indeed even different cancer types.
Quantitative proteomics is a comparative technology.

When applied to cancer, the best comparison is to the
cell type of origin for that cancer. If the cell of origin is
unknown or of a developmental state rendering it un-
available for study, the choice of comparison becomes
more contextual. In this study, we chose to compare tu-
mors to normal cerebellum in order to provide a stand-
ard normalization and allow for relative comparisons
between subgroups. In this way, proteins that were sig-
nificantly different in more than one subgroup, and thus
likely contributing to the biology of those subgroups,
would not be lost due to a lack of a difference between
those subgroups. We felt this approach was more likely
to yield biology common across medulloblastoma and
thus more favorable for translation. An alternative

approach would have been to perform pairwise compari-
sons between all subgroups, but such an analysis would
have yielded little meaningful biology given the size of
the sample set, breadth of protein coverage and number
of possible comparisons. Future studies may better apply
such an approach, particularly when technological ad-
vances enabling higher throughput make larger sample
sets more feasible.
Our findings illustrate the unique advantages of proteo-

mics that are both complementary to, and exclusive of
genomic output. For example, the observation that there is
a relatively poor correlation between transcript and pro-
tein abundance provides an example of how proteomics
can help clarify which gene expression differences have the
potential to influence cellular phenotype. Chromosomal
copy number alterations can involve many genes, yet pro-
teomics can help to refine which of those gene products is
most affected by the change in gene dose. For example, we
found elevated levels of the KPNB1 and ARHGDIA pro-
teins correlating with gained chromosome 17q yet these
genes are not correspondingly elevated at the level of the
transcript. Thus proteomics allows for the identification
and, by virtue of their translation, prioritization of gene
products that are candidates to generate phenotype from
CNAs. Proteomics, when coupled with RNA-seq data, can
also verify the importance of context specific isoform
switches by confirming their translation and abundance.
For example, we identify translated isoforms of 21 proteins
that are restricted to one or more subgroups, thus demon-
strating a mechanism beyond genomics driving subgroup
biology. Another subgroup constrained protein we have
confirmed is HMGA1, a stem cell phenotype regulator
that is both a MYC target gene and a regulator of MYC
[59, 73]. MYC has protean transformational effects upon
cells with cancer specific patterns. In this case, proteomic
investigation has highlighted the association of this
MYC-HMGA1 effect with group 3 medulloblastoma.
Lastly, pathway analysis can be used to predict prominent
biological networks from proteomic data. In contrast with
genomic networks, such predictions more directly repre-
sent cellular function such as the EIF4F pathway identified
here. In addition to biological discovery, proteomics offers
expanded translational opportunities owing to the fact that
tumor proteins are the most accessible pharmaceutical tar-
gets, constitute cancer specific antigens for immunother-
apy applications, and provide potential biomarkers. Taken
together, these advantages demonstrate the necessity of in-
tegrating quantitative proteomic discovery data into large
scale ‘omic’ based attempts to understand cancer biology.

Materials and methods
Clinical samples
The tumor samples used in this manuscript are from
Children’s National Health System (Rood Lab, Washington
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DC, United States), German Cancer Research Center
(DKFZ, Pfister Lab, Heidelberg, Germany), Hospital for
Sick Children (Taylor Lab, Toronto Canada). The medullo-
blastoma samples have been classified using the
methylation profiling classifier from MolecularNeuro-
pathology.org. Normal cerebellum samples are from
the University of Maryland Brain and Tissue Bank.
Tissue sample information is listed in Additional file 1:
Table S1.

Cell culture and EIF4E inhibitor treatments
MB002 and MB004 were gifts from Y.J. Cho (Oregon
Health & Science University, Portland, OR, United
States). R002, R026 and R032 were gifts from A. Moore
and W. Ingram (Queensland Children’s Tumour Bank,
Brisbane, Australia). DAOY, D556 and D283 cell lines
were maintained in Eagle’s Minimum Essential Medium
(ATCC) supplemented with 10% fetal bovine serum
(ATCC) and 100 U/mL penicillin and streptomycin
(ATCC). All established cell lines were verified with STR
analysis (GRCF at Johns Hopkins). R026, R032 and R060
cell lines were maintained in Dulbecco’s Modified Eagle’s
Medium/Ham’s Nutrient Mixture F12 (ATCC) without
HEPES supplemented with 10% fetal bovine serum
(ATCC), Glutamine (ATCC) and 100 U/mL penicillin
and streptomycin (ATCC). MB002 and MB004 cells
were maintained in culture media with 1:1 Dulbecco
modified Eagle medium (Gibco) and neural stem cell
media (Gibco) supplemented with non-essential aminoa-
cids (Gibco), Sodium Pyruvate (Gibco), HEPES, Gluta-
Max (Gibco), B27 (Gibco), EGF (Gibco), FGF
(Millipore), Heparin (Stem Cell),LIF (Millipore), 10%
fetal bovine serum (ATCC) and 100 U/mL penicillin and
streptomycin (ATCC). Primary human normal
astrocytes-Cerebellar were acquired from ScienCell and
maintained in Astrocyte medium (ScienCell) supple-
mented with Fetal Bovine Serum (ScienCell), astrocyte
grow supplement (ScienCell) and penicillin/streptomycin
(ScienCell). All cells lines were maintained at 37 °C with
5% CO2 in a 95% humidified atmosphere.
For EIF4E inhibitor treatment, 1000 cells were plated

in a 96 well plate in triplicates with dilutions of the
EIF4E inhibitors, 4EGI-1(Selleckchem) and 4E1RCat
(Selleckchem), and the chemotherapy agent cisplatin
(TOCRIS Bioscience). DMSO was used as control. Cells
were serum starved for 24 h before treatment and
seventy-two hours after treatment cell viability was ana-
lyzed using the CellTuter-Glo®2.0 Assay kit (Promega)
according to the manufacture recommendations. Experi-
ments were repeated in triplicate.

SILAC proteomic analysis
We created a pooled super-SILAC reference atlas,
termed the Labeled Atlas of Medulloblastoma Proteins

(LAMP), by combining equal amounts of isotopically la-
beled proteins from 8 primary and established cell lines
chosen to represent the breadth of medulloblastoma
across the four genomic subgroups (DAOY, D556, D283,
R026, R032, R060, MB002, and MB004). Super-SILAC
refers to the use of multiple cell lines to create the refer-
ence atlas as opposed to just one. Briefly, cell lines are
passaged in growth media that has been depleted of ly-
sine and arginine. To this media, lysine and arginine in-
corporating 6 carbon isotopes (13C6) was added. The
proteins made by these cells incorporate the isotopic
amino acids creating a predictable mass increase. Serial
aliquots were tested over time until isotopically labeled
proteins exceeded 95% of the total. Mass spectrometry
of the LAMP itself identified 4903 proteins.
We spiked in the LAMP at a ratio of 1:1 based upon

BCA protein quantitation into protein lysates from 36
medulloblastoma tumors and 5 control cerebellum sam-
ples. 100 μg of protein from each sample was run in
triplicate using 1-D SDS PAGE fractionation, cut into 32
bands and in-gel trypsin digested. Concentrated peptides
from each band were injected via an autosampler (6uL)
and loaded onto a Symmetry C18 trap column (5 mm,
300 μm i.d. × 23 mm, Waters) for 10 min at a flow rate
of 10 μL/min, 100% A. The mobile phases consisted of
water with 0.1% formic acid (A) and 90% acetonitrile
(B). The sample was subsequently separated by a C18
reverse-phase column (3 μm, 200A, 100 mm × 15 cm,
Magic C18, Michrom Bioresources) at a flow rate of
300 nL/min using an Eksigent nano-HPLC system
(Dublin, CA). A 65 min linear gradient from 5 to 60% B
was employed. Eluted peptides were introduced into the
mass spectrometer via Michrom Bioresources Captive-
Spray. The spray voltage was set at 1.4 kV and the
heated capillary at 200 °C. The LTQ-Orbitrap-XL (Ther-
moFisherScientific) was operated in data-dependent
mode with dynamic exclusion in which one cycle of ex-
periments consisted of a full-MS in the Orbitrap (300–
2000 m/z) survey scan in profile mode, resolution
30,000 and five subsequent MS/MS scans in the LTQ of
the most intense peaks in centroid mode using
collision-induced dissociation with the collision gas (he-
lium) and normalized collision energy value set at 35%.
For protein identification and quantification we used

MaxQuant version 1.5.3.30 software developed by Max
Planck Institute of Biochemistry (http://www.bio-
chem.mpg.de/5111795/maxquant). Mass spectral data
were uploaded into MaxQuant software. Files from each
lane were searched against the forward and reverse Uni-
prot human database (UniProt release 2016_05 with
20,201 entries) for partially tryptic peptides allowing one
missed cleavage, and possible modification of oxidized
methionine (15.99492 Da) and heavy arginine
(6.0201 Da) and heavy lysine (8.0142 Da). MaxQuant
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uses the Andromeda search engine. Mass tolerances
were set at +/− 20 ppm for first peptide search and +/−
4.5 ppm for main peptide search, with intensity thresh-
old of 500. Data were filtered based on a 5% protein false
discovery rate. All the bands from each lane were
summed as one sample in the analysis.

Microarray gene expression analysis
To generate gene expression profiling data, 19 tumor
and 5 control specimens were homogenized in Trizol
followed by phase separation of nucleic acids with
chloroform. RNA was extracted using Picopure RNA
isolation kit (Arcturus Bioscience, Mountain View, CA).
DNA was removed by treating columns with RNase Free
DNase (Qiagen, Valencia, CA). RNA integrity and con-
centration were quantified using a 2100 Bioanalyzer
(Agilent Technologies, Santa Clara, CA). The GeneChip
WT Plus kit (Affymetrix, Santa Clara, CA) was used for
cRNA synthesis from total of 250 ng of RNA. cRNA was
hybridized to GeneChip Human Gene 2.0 ST Array
(Affymetrix, Santa Clara, CA) and probe fluorescence in-
tensity was detected with GeneChip® System 3000Dx v.2
(Affymetrix, Santa Clara, CA). Gene expression profiles
for the rest of the tumors (16) were previously gener-
ated;7 using the GeneChip™ Human Genome U133A 2.0
Array and 9 using the Human Gene 1.1 ST Array (GEO
accession number GSE37385 and GSM324067 respect-
ively) (Additional file 1: Table S1). Expression data for
each Chip type were analyzed independently in the R en-
vironment (v3.4.1) (https://www.r-project.org) with the
oligo package (v1.36.1). Differentially expressed genes
for each subgroup versus cerebellum were calculated
using the limma R-package (v3.28.21).

Evaluating mRNA-protein correlation
mRNA and protein expression values. For mRNA, ex-
pression data values (log2) from every chip type were
merged and corrected for potential chip type effect ap-
plying an Empirical Bayes method using the combat
function from the sva R package (v3.20.0). For proteins,
we used the ratio of heavy over light (H/L) values as de-
scribed above.

Number of overlapping genes in proteomic and mRNA data
sets
The proteomic data set used for mRNA-protein correl-
ation (35 tumors, Additional file 1: Table S1) included a
total of 2846 gene products quantified in at least 1
tumor; 2430 of these were present in the mRNA expres-
sion dataset. To compare mRNA and protein variation
across tumors, we focused on 1240 genes with quantified
protein in at least one third of the tumors. For subgroup
specific analysis, we used genes with quantified protein
in at least one half of the tumors.

Correlation between mRNA and protein variation
We first calculated the Spearman correlation coefficient
between the mRNA expression values (log2) and the
protein H/L ratio for each of the 1240 genes. Then,
p-values corresponding to the coefficients were calcu-
lated with < 0.05 considered significant. The same ap-
proach was applied to each subgroup. Correlation
differences among the four subgroups were evaluated
based on the Kruskal-Wallis rank-sum test and differ-
ences between Group 4 and the rest was evaluated based
on a two-sided Wilcoxon rank-sum test.

KEGG pathway analysis
Based on Spearman correlation coefficients, we sepa-
rated the highly correlated mRNA-protein pairs (Quar-
tile 3) from those with low correlation (Quartile 1).
Next, KEGG pathway analysis using the DAVID Bio-
informatics Database (DAVID Bioinformatics Resources,
http://david.abcc.ncifcrf.gov/) was performed with the
protein identifier of genes in each group to find enriched
biological processes. Pathways with a Bonferroni cor-
rected p-value < 0.01 in at least one group were selected.

mRNA-protein correlation versus molecular stability
To analyze the relationship between mRNA-protein cor-
relation and stability, we used mRNA and protein
half-life data from mouse fibroblast cell line [58]. Only
genes (456) in common between both our datasets and
the mouse fibroblast dataset were included in the ana-
lysis. mRNA or proteins with half-life values higher than
the upper quartile (Q3) were considered stable and those
with half-lives in the lowest quartile (Q1) were consid-
ered unstable. Correlation differences between the 2 cat-
egories were calculated based on two-sided Wilcoxon
rank-sum test.

Genome wide methylation analysis
DNA (500 ng) was obtained from 35 tumor and 5 con-
trol cerebellum tissue lysates using the Gentra Puregene
DNA extraction kit (Quiagen, Valencia, CA) (Add-
itional file 1: Table S1). DNA was prepared for methyla-
tion analysis via bisulphate conversion using EZ DNA
Methylation-Gold kit (Zymo Research, Irvine, CA).
Bisulphite-converted DNA was denatured and neutral-
ized. After amplification via PCR, DNA was fragmented
and hybridized onto the Infinium Methylation EPIC
BeadChip (Illumina, San Diego, CA). Raw data files
(.idat) generated by the Illumina iScan system were proc-
essed in the R statistical environment (v3.3.1) (https://
www.r-project.org) using minfi (v 1.22.1) and ChAMP
(v2.4.1) packages. Probes were removed if their p-value
was above 0.01 in one or more samples. Additionally, we
filtered out probes with a beadcount lower than 3 in at
least 5% of samples. Finally, we removed probes on the
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sex chromosomes as well as those located on or close to
known single nucleotide polymorphism (SNP). We
retained a total of 749,678 probes for the analysis. The
data was normalized using the BMIQ method. Differen-
tially methylated regions (DMRs) were calculated for
each subgroup versus cerebellum using ChAMP
R-package with the DMRcate method [53].

Methylation array copy number analysis
Copy number segmentation was performed from the
genome wide methylation arrays using the conumee
R-package (v1.8.0) using normal cerebellum as diploid
controls. Segmented copy number estimates were proc-
essed for input with GISTIC2 [44] using the default pa-
rameters. The copy number by genes was used for the
correlation analysis. Significant broad chromosome arm
lesions were evaluated across all samples without separ-
ating them between subgroups (q-value < 0.1).

Effect of methylation and copy number on protein
expression
Correlation of methylation status and gene/protein
expression
Differentially methylated regions (DMRs) were calcu-
lated comparing each subgroup to cerebellum using
ChAMP R-package with the DMRcate [53] method.
Each DMR was assigned to a gene according to their co-
ordinates in the hg19 reference genome. Differentially
expressed proteins or genes (up- or down-regulated)
were correlated with their associated absolute DMR
values (gain or loss). Odds ratios were calculated for
each subgroup using Fisher’s exact method.

Correlation of copy number alteration and gene/protein
expression
The matched CNA (Copy Number alteration), protein
and mRNA abundance measurements from 32 tumors
(Additional file 1: Table S1) were used to study the im-
pact of CNA on gene and protein expression. We fo-
cused on 1148 genes with quantified proteins in at least
33% of the tumors that were also included in the CNA
and mRNA datasets. For each of those genes, we calcu-
lated the Spearman correlation coefficient between CNA
and mRNA/protein measurements. Significant calls were
made based on a p-value cutoff of 0.05.

NMF clustering
NMF clustering was performed from the proteomic
ratios H/L using the NMF R-package (v0.20.0) [19].
For NMF clustering we used proteins quantified in at
least 40% (1158 proteins) of the samples in the data-
set. The missing ratio L/H values (NAs) were re-
placed by the lowest value found in the dataset (0.05)
to approximate the lower limit of detection. We used

the NMF algorithm brunet [5] with 5000 runs for
each factorization rank k between 2 and 10 using the
default seed method. The same NMF settings were
applied to the transcript abundance of each of the
genes coding for the proteins used in the proteomic
classification.

Differentially expressed proteins
Proteins from each medulloblastoma subgroup were
compared to control cerebellum in a pairwise fashion
using the R environment (v3.4.1) with statistical confi-
dence measured using the Wilcoxon rank-sum test at
a p-value cut-off of 0.05. Proteins were also required
to be present in at least half of the total replicates of
both subgroups in a comparison. To these differen-
tially abundant proteins were added the subgroup re-
stricted proteins, those that were present in at least
half of the samples of one subgroup and absent in
the remaining samples.

Pathway analysis
Pathway analysis of differentially expressed proteins
was performed using Ingenuity Pathway Analysis
(IPA) v. 01–04. Lists of differentially expressed pro-
teins and their fold changes for each genomic sub-
group, compared to control cerebellum, were
imported into IPA. For this analysis, we removed
from consideration the 2 tumor samples that clus-
tered separately given their distinctiveness. Proteins
that were present in one group and absent in another
were arbitrarily assigned a fold change value equal to
the average fold change of quantifiable proteins +/−
two standard deviations. Core expression analysis was
created for each of the lists considering direct and in-
direct relationships using Ingenuity Knowledge Base
genes to calculate p-values. Top pathways for each
subgroup were then selected based on highest ranked
p-values (Additional file 14: Table S6).

Protein isoform quantification
To create the customized MB specific isoform database,
we used the R package customProDB (v1.16) [72].
RNA-seq data from 167 publicly available MB tumors
(Datasets: EGAD00001001899, EGAD00001002683,
EGAD00001001210, EGAD00001001620, and
EGAD00001000328) were mapped to human genome
GRCh38/hg38 using STAR(v.2.5.1) [14]. Protein coding
transcripts (UCSC RefSeq annotation) were quantified
using the calculateRPKM function of the custom-
ProDB package. Only protein coding transcripts
expressed in at least 5% of the samples and belonging
to the top 80% by expression were included in the
database. For protein isoform identification and quan-
tification, we used MaxQuant software (v.1.5.3.30).
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Files from each lane were searched against the MB
specific isoforms database for partially tryptic peptides
allowing one missed cleavage, and possible modifica-
tion of oxidized methionine (15.99492 Da), heavy ar-
ginine (6.0201 Da) and heavy lysine (8.0142 Da).
Mass tolerances were set at +/− 20 ppm for first pep-
tide search and +/− 4.5 ppm for main peptide search,
with an intensity threshold of 500. Data were filtered
based on a 5% protein false discovery rate. All the
bands from each lane were summed as one sample in
the analysis. For differential isoform expression, we
focused on genes that contain isoforms in more than
one protein group. The statistical confidence of the
differentially expressed isoforms was measured using
the Kruskal-Wallis rank-sum test. Significant calls
were made based on a p-value cutoff of 0.05 (Add-
itional file 17: Table S8).

RNA sequencing
RNA-seq data from 167 publicly available MB tumors
(Datasets: EGAD00001001899, EGAD00001002683,
EGAD00001001210, EGAD00001001620, and
EGAD00001000328) were mapped to human genome
GRCh38/hg38 using STAR(v.2.5.1) [14]. Genes and iso-
form expression was quantified using the cufflinks soft-
ware (v2.2.1) [68] and hg38 UCSC transcript annotation.

Survival analysis
Overall survival functions were estimated using the
Kaplan-Meier method and p-values were calculated
using the log-rank test. The statistical analysis was per-
formed in the R statistical environment using the R
package survival (v2.41–3) and survminer (v0.4.0). Gene
expression and overall survival data from 113 Group 3
medulloblastoma tumors were downloaded from a previ-
ously published dataset [7] (GEO accession data:
GSE85218). Group 3 medulloblastoma tumors were sep-
arated into samples with HMGA1 expression greater
and less than the median.

Western immunoblotting
Protein extracts were prepared by lysing tumor tissue
cells in RIPA Lysis buffer (Millipore) containing 50 mM
Tris–HCl, pH 7.4, 1% Nonidet P-40, 0.25% sodium
deoxycholate, 150 mM NaCl, 1 mM EDTA, 1× protease
inhibitor cocktail (Roche Applied Science). Tumor ly-
sates were resolved by SDS-PAGE, transferred to a nitro-
cellulose membrane, and incubated with HMGA1
antibodies (D6A4, Cell Signaling). Protein detection was
performed using ECL Western blotting detection reagents
(SuperSignal West Dura, Thermo Scientific).

Conclusions
Quantitative proteomics offers an important dimension
beyond genomics, proximate to the molecular disease
processes underlying malignancy. Here, we present the
largest tissue based Super-SILAC quantitative proteo-
mics study to date demonstrating how proteomics com-
plements genomic platforms to yield a more complete
understand of functional tumor biology and identify
novel therapeutic targets for medulloblastoma. We con-
clude that there is a poor correlation between epigenetic
features/transcript level and protein abundance. How-
ever, proteomics can help distill the most salient gen-
omic features based upon the axiom that a genetic event
must be translated to the proteome in order to exert a
functional effect upon the cell. Proteomics can also help
identify which genes are affected by dosage changes
resulting from chromosomal copy number alterations. In
concert with RNA-seq, proteomics can identify
disease-specific translated splice isoforms as well as
novel protein isoforms. While proteomic data can be
used to recapitulate the genomic subgroups, the gene
products it uses to do so are different than those identi-
fied with genomic platforms, thus offering a new cohort
of targets for attempted intervention. Indeed, signaling
networks built from protein data are more reflective of
cell biology and therefore a more robust source of thera-
peutic targets. Thus proteomics can be used retrospect-
ively to help interpret and filter the wealth of genomic
findings as well as prospectively to map out functional
cellular biology to be exploited for therapeutic
development.

Additional files

Additional file 1: Table S1. Clinical and tumor sample information.
(XLSX 12 kb)

Additional file 2: Table S2. Correlation between mRNA and Protein
abundance. Column names legend. Gene: Gene name symbol,
TumorID_Prot: Protein quantification value, TumorID_RNA: mRNA
quantification value, corr: spearman correlation coefficient, p-value:
spearman correlation coefficient p-value. (XLSX 2 mb)

Additional file 3: Figure S1. Correlation between mRNA and protein
abundance by subgroups. a) Frequency distribution plots of mRNA-
protein spearman’s correlations for each medulloblastoma subgroup.
Positive mRNA-protein correlations were found for 68–80% of mRNA-
protein pairs with means between (0.30–0.16) depending on the subgroup.
However, just a small proportion of them were significant (10–17%). Group
3 was the subgroup with the highest number of significant positive
correlations and the highest mean; in contrast, group 4 had the lowest
mean. b) Box-plots depicting the distribution of mRNA-protein Spearman’s
correlations by subgroup. p-values for differences between the subgroups
were calculated with the Kruskal-Wallis rank-sum test. p-values indicating
the differences between group 4 and the others were calculated with a
two-sided Wilcoxon rank sum test. (PDF 706 kb)

Additional file 4: Figure S2. Effect of DNA methylation on mRNA and
protein abundance. a) Differentially expressed proteins and RNA, and
differentially methylated regions (DMR) were calculated for each
subgroup compared to control cerebellum. The pie charts indicate the
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percentage of differentially expressed proteins (upper panel) or
transcripts (lower panel) associated with a DMR. b) Correlation between
increased/decreased expression of protein (upper panel) and mRNA
(lower panel) and the loss/gain of methylation on the associated gene
promoter. Odds ratio and p-value using Fisher’s exact method were
calculated for each subgroup. (PDF 676 kb)

Additional file 5: Figure S3. Correlation between copy number, mRNA
and protein abundance. a) Frequency distribution plots of Spearman’s
correlations for CNA-mRNA (left) and CNA-protein (right). Positive CNA-
mRNA and CNA-protein correlations were found in 81 and 69% of the
CNA-mRNA-protein trios with a mean 0f 0.12 in both cases. However, only
18% of mRNA-CNA and 13% of mRNA-protein correlations were significant.
b) Representation across the genome of significant correlations for CNA-
mRNA (upper panel) and CNA-Protein (lower panel). (PDF 2.24 mb)

Additional file 6: Table S3. Correlation between CNA and mRNA and
Protein abundance. Column names legend. Gene: Gene name symbol,
TumorID_Prot: Protein quantification value, TumorID_RNA: mRNA quantification
value, TumorID_CN: Copy Number value, corr_Prot_CN: spearman correlation
coefficient between protein and copy number, pvalue_Prot_CN: spearman
correlation coefficient p-value between protein and copy number,
corr_RNA_CN: spearman correlation coefficient between mRNA and
copy number, pvalue_RNA_CN: spearman correlation coefficient
p-value between mRNA and copy number, Cytoband: Gene cytoband,
Coord: Gene coordinates in GRch38 reference genome. (XLSX 1.30 mb)

Additional file 7: Figure S4. Copy number effect on mRNA and protein
abundance on chromosome arm 17q. a) GRB2, LASP1, KPNB1 and
ARHGDIA showed significant CNA-protein correlations (p < 0.05). The
colors depict the range from low (white) to high (green) of copy-
number, protein and mRNA abundance. Samples were ranked by copy
number at each gene locus. b) ARHGDIA protein was found to be
significantly overexpressed in group 4 tumors which frequently harbor 17q gains
but not at the mRNA transcript level. Differences among the four subgroups
were evaluated based on the Kruskal-Wallisrank-sum test. (PDF 916 kb)

Additional file 8: Figure S5. Proteomic subgroup classification
recapitulates genomic subgroups using different data elements.
Comparison of non-negative matrix factorization consensus clustering
between protein and mRNA expression data from 34 primary
medulloblastoma and five normal cerebellar tissues. a) The Cophenetic
and Silhouette coefficient values for rank k between 2 and 10 in mRNA
and protein dataset. b) NMF clusters (k = 6) for the same genes coding
for the proteins used in the proteomic classification at the mRNA or protein
level. Clustering did not improve for other k values 2 through 10
(data not shown). (PDF 994 kb)

Additional file 9: Table S4. Differentially expressed isoforms.

Additional file 10: Figure S6. Medulloblastoma subgroup specific
isoforms. Schematic representation of MCM3, TPM4, SPTAN1 and EEF1D
isoforms. Boxplots show the quantification of each protein isoforms
group across all medulloblastoma subgroups. p-values for differences
between subgroups were calculated based on the Kruskal-Wallis rank-
sum test. A protein group is defined as the group of isoforms that are in-
distinguishable due to the position of identified peptides. (PDF 1.13 mb)

Additional file 11: Figure S7. Expression of CALD1 isoforms in
medulloblastoma tumors. The protein expression level of CALD1 isoforms
in medulloblastoma subgroups is confirmed at the epigenetic (H3K27Ac
Chip-seq) and mRNA level. a) Schematic representation of CALD1
isoforms. b) H3K27Ac Chip-seq genome tracks in medulloblastoma
tumors. Active transcription region marks (H3K27Ac) are observed in the
alternative transcription start site for the isoforms HeLa l-CaD I and II
correlating with higher expression of these protein isoforms. c) Boxplots
representing the mRNA expression levels for CALD1 isoforms. (PDF 2.2 mb)

Additional file 12: Figure S8. Expression of HMAG1 isoforms in
medulloblastoma tumors. a) Schematic representation of HMGA11
isoforms and Boxplots representing the mRNA expression levels for
HMGA1 isoforms. b). Western blot of HMGA1 isoforms in the four
medulloblastoma subgroups. Both HMAG1 isoforms are highly expressed
in group 3 medulloblastoma. c) Kaplan–Meier survival curve shows that
increased levels of HMGA1 are associated with poor survival in Group 3
Medulloblastoma. d) Expression level of HMGA1 is highly correlated with

the expression of the oncogene MYC in Group 3 Medulloblastoma. (PDF
1.94 mb)

Additional file 13: Table S5. List of Differentially expressed proteins.
(XLSX 235 kb)

Additional file 14: Table S6. List of present and absent proteins.
(XLSX 153 kb)

Additional file 15: Table S7. List of upstream regulator for each
medulloblastoma subgroup. (XLSX 15.9 kb)

Additional file 16: Figure S9. Subgroup representative pathways.
Enriched pathways generated with Ingenuity Pathway Analysis software
based on lists of differentially quantitated proteins by subgroup
normalized to control cerebellum. Each circle plots the p-value for a
pathway in each medulloblastoma subgroup. (PDF 623 kb)

Additional file 17: Table S8. List of pathways representative for each
medulloblastoma subgroup. (XLSX 72.6 kb)

Additional file 18: Figure S10. EIF4 inhibitor concentration dependent
cell death in medulloblastoma cells. a) MB002, MB004 and D556 cells
were treated with the EIF4F inhibitors 4E1RCat for 72 h at the indicated
concentrations. In all cell lines we found concentration-dependent cell
death when treated with EIF4F inhibitors. D556 at normal (10%FBS) and
nutrient deprivation (2% FBS) conditions (b) and D556 and primary
human cerebellar astrocytes cells (c) were treated with the EIF4F inhibitor
4E1RCat for 72 h at the indicated concentrations. Error bars indicate the
standard variation deviation. d) Treatment of D556 and primary human
cerebellar astrocytes cells with 4E1RCat in combination with cisplatin at
the indicated concentrations. (PDF 975 kb)
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