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SUMMARY

Cytotoxic compounds are important drugs and re-
search tools. Here, we introduce a method, scalable
time-lapse analysis of cell death kinetics (STACK), to
quantify the kinetics of compound-induced cell death
in mammalian cells at the population level. STACK
uses live and dead cell markers, high-throughput
time-lapse imaging, and mathematical modeling to
determine the kinetics of population cell death over
time. We used STACK to profile the effects of over
1,800 bioactive compounds on cell death in two hu-
man cancer cell lines, resulting in a large and freely
available dataset. 79 potent lethal compounds com-
mon to both cell lines caused cell death with widely
divergent kinetics. 13 compounds triggered cell death
within hours, including the metallophore zinc pyri-
thione. Mechanistic studies demonstrated that this
rapid onset lethal phenotype was caused in human
cancer cells by metabolic disruption and ATP deple-
tion. These results provide the first comprehensive
survey of cell death kinetics and analysis of rapid-
onset lethal compounds.

INTRODUCTION

Cell death is a fundamental biological process that can be trig-

gered by diverse lethal stimuli. Detergents and other harsh treat-

ments that directly permeabilize the plasma membrane can kill

the cell rapidly and without activating a specific regulated cell

death pathway (Wolpaw et al., 2011). By contrast, cell death in

response to physiological signals, stresses, or lethal compounds

that engage specific protein targets can takemany hours or even

days (Biton and Ashkenazi, 2011; Dixon et al., 2012; Lu et al.,

2014; Shimizu et al., 2004). Cell death under these conditions

is initiated by specific signaling cascades or metabolic disrup-

tions and is executed through a highly ordered, stepwise pro-

cess. For example, during apoptosis, a key step in cell death

execution involves permeabilization of the mitochondrial outer

membrane by the pore-forming proteins BCL2-associated X

protein (BAX) and BCL2-antagonist/killer (BAK) (Wei et al.,

2001), while during ferroptotic cell death the iron-dependent,

oxidative destruction of membrane lipids likely causes terminal

membrane permeabilization (Dixon et al., 2012).
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The time between exposure to a given lethal stimulus and ter-

minal membrane permeabilization is an important period. In

addition to enabling the ordered execution of cell death, this

time can allow for the release of ‘‘danger signals’’ to neigh-

boring cells and, sometimes, for the cell to return from the brink

of death if the lethal stimulus is ultimately removed (Gong et al.,

2017; Tang et al., 2012). For reasons that remain poorly under-

stood, cell death kinetics vary considerably between lethal

stimuli, cell lines, and cell death pathways, as well as between

individual cells within the same population (Bernheim et al.,

1977; Biton and Ashkenazi, 2011; Dixon et al., 2012; Lu et al.,

2014; Shimizu et al., 2004; Spencer et al., 2009; Vanden Berghe

et al., 2010). A major goal of the present work was to develop a

means to quantify this variability in cell death kinetics at the

population level, as this knowledge may enhance our under-

standing of different lethal pathways, improve the classification

of lethal perturbations, and help identify new drugs that act

through unique mechanisms (Grootjans et al., 2016; Hafner

et al., 2016; Harris et al., 2016; Palchaudhuri et al., 2015; Tyson

et al., 2012).

Profiling the response of cancer cells to different lethal com-

pounds can provide insight into the regulation of specific cell

death pathways and may lead to the discovery of new targeted

therapies (Dixon et al., 2012; Haverty et al., 2016; Wolpaw

et al., 2011). These large-scale studies typically investigate cell

death at a single, arbitrary time point (e.g., 48 or 72 hr) that pro-

vides no insight into the kinetics of cell death or whether these

kinetics differ between treatments. Moreover, in these and

many other studies, cell death is not examined directly, but

rather using bulk biochemical measures of overall population

metabolic activity or DNA content. These methods are fast and

inexpensive, but subject to technical confounds that can inter-

fere with the analysis of cell death (Chan et al., 2013). Methods

that directly assess cell death within a population could help

address these limitations.

To directly measure population cell death and assess the ki-

netics of this process we developed a method called STACK.

This method uses live and dead cell markers, high-throughput

time-lapse imaging, and mathematical modeling to capture the

kinetics of cell death in terms of the length of time between the

addition of a lethal stimulus and the onset of cell death, and

the maximum rate of this process within the population. We

find differences in cell death kinetics between lethal compounds,

compound concentrations, and cell lines. We observe that

the kinetics of compound-induced cell death can be modulated

by compound interactions and identify 13 compounds that

induce cell death with an exceptionally rapid onset, including
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Figure 1. Measurement of Cell Death Using Live and Dead Cell Markers

(A) Overview of the STACK approach.

(B) Representative images of Nuc::mKate2-expressing Bax+/+ Bak+/+ (WTN) and Bax�/– Bak�/– (DKON) mouse embryonic fibroblasts (MEFs) incubated with

SYTOX green and treated with lethal compounds. Cells were imaged every 2 hr for 72 hr and representative images are shown for 0, 36, and 72 hr. Scale

bar, 50 mm.

(C) Counts of live (mKate2+) and dead (SG+) cells over time for the cell lines and conditions in (B).

(D and E) Counts of mKate2+ and SG+ cells over time in response to bortezomib (Btz) and thapsigargin (Thap).

Data in (C–E) represent mean ± SD from three independent biological replicates.
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the metallophore zinc pyrithione (ZP). We demonstrate that ZP

triggers rapid non-apoptotic cell death via bioenergetic collapse,

and the timing of cell death onset in response to ZP is deter-

mined, in part, by the metabolic flexibility of the cell. These

studies help lay the foundation for the systematic, large-scale

study of cell death kinetics in mammalian cell populations.

RESULTS

We developed STACK as a high-throughput method to quantify

population-level cell death kinetics in large numbers of samples

in parallel. STACK has three major steps: generation of ‘‘live cell’’

reporter cell lines, counting of live and dead cells over time, and

analysis of cell death kinetics (Figure 1A). Live cells are identified

by expression of nuclear-localized mKate2 (Nuc::mKate2; Arty-
2 Cell Systems 4, 1–11, June 28, 2017
movich and Appledorn, 2015), while dead cells are identified

by uptake of the live cell-impermeant nucleic acid dye SYTOX

green (SG, 20 nM), which is included in the growth medium.

Nuc::mKate2 expression and incubation with SG themselves

do not alter cell proliferation or sensitivity to cell death (Figures

S1A and S1B). Following the addition of a lethal perturbagen,

live (mKate2+) and dead (SG+) cells within each population are

counted using an automated high-throughput microscope

housed within a tissue culture incubator. As high cell density

within an individual population can alter sensitivity to death-

inducing stimuli (Hafner et al., 2016; Reuven et al., 2013), cells

are seeded such that they are less than 50% confluent when first

exposed to a lethal treatment. Phase contrast images are ac-

quired in parallel to live and dead cell counts to assess popula-

tion confluence, but this is not essential to the STACK approach.
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We validated our ability to detect cell death using this

approach in stable Nuc::mKate2-expressing wild-type (WTN)

and Bax�/– Bak�/– double knockout (DKON) mouse embryonic

fibroblasts (MEFs) (Wei et al., 2001). Cells seeded in 384-well

plates were treated with DMSO (vehicle control), the multikinase

inhibitor staurosporine (Sts), or the system xc
� inhibitor erastin,

and imaged every 2 hr for 72 hr starting immediately after com-

pound addition. Treatment with DMSO was not lethal to either

cell line and the number of live mKate2+ cells increased rapidly

until plateauing around 36 hr, shortly after these populations

reached �100% confluence (Figures 1B, 1C, and S1C). Sts

induces Bax/Bak-dependent apoptosis, while erastin induces

Bax/Bak-independent ferroptosis (Dixon et al., 2012; Wei et al.,

2001). In WTN cells, Sts (8 nM) treatment did not immediately

arrest cell proliferation. Rather, mKate2+ counts increased for

�12 hr before starting to decrease, concomitant with increased

SG+ counts, indicative of the onset of cell death within the pop-

ulation (Figures 1B and 1C). DKON MEFs were resistant to the

lethal effects of Sts treatment, as expected, although cell prolif-

eration was slowed relative to DMSO-treated cells (Figures 1B

and 1C). In both WTN and DKON populations erastin (10 mM)

treatment was briefly compatible with continued proliferation,

but then resulted in decreased mKate2+ counts and increased

SG+ counts (Figures 1B and 1C). Thus, using STACK we easily

resolved known differences of cell death sensitivity between

cell lines and lethal compounds.

Like Sts, treatment with two additional mechanistically dis-

tinct, pro-apoptotic lethal compounds, the proteasome inhibitor

bortezomib (Btz) and the sarco/endoplasmic reticulum Ca2+-

ATPase inhibitor thapsigargin (Thap), was more lethal to WTN

than DKON cells, indicating that this method can capture cell

death in response to diverse lethal stimuli (Figures 1D, 1E, and

S1D). In these experiments few cells were simultaneously posi-

tive for both mKate2+ and SG+ (Figure S1E). However, SG+

counts occasionally declined from the maximum (e.g., WTN

MEFs treated with Sts and Thap, Figures 1C and 1E). This

phenomenon is most likely explained by the loss of SG from

long-dead cells. We account for this potential confound when

analyzing cell death kinetics, as described below.

A major goal was to develop metrics to summarize and quan-

tify population cell death and cell death kinetics (Figure 1A, step

3). Toward this end, we first integrated mKate2+ and SG+ counts

into a single metric, the lethal fraction (LF), where a value of

0 means all cells within the population are alive and a value of

1 means all cells within the population are dead (Figures 2A

and S2A, STAR Methods). LF values are computed separately

at each time point and therefore take into account increases in

live cell population size before the onset of cell death. This calcu-

lation also includes a correction for the observed loss of SG from

long-dead cells. The maximum LF score (LFmax) and the area

under the curve (AUC) provide two useful means of summarizing

in a single value the overall lethality of a treatment, but do not

provide insight into cell death kinetics per se (Figure 2A).

To quantify cell death kinetics, we parameterized curves of LF

scores over time using a ‘‘lag exponential death’’ (LED) model

and extracted two key parameter values: the time lag between

the addition of a lethal perturbation and the onset of cell death

within a population (DO) and the maximal cell death rate within

the population (DR) (Figures 2A and S2A) (STAR Methods). The
LED model intuitively captures the typical response of cells to

lethal perturbation, which involves a period of signal transduc-

tion and/or metabolic disruption prior to frankmembrane perme-

abilization (Biton and Ashkenazi, 2011; Dixon et al., 2012; Lu

et al., 2014). Sigmoidal models were also examined (Figure S2B),

but had a less obvious biological interpretation and were not

explored further here. In a control experiment, differences in

starting cell confluence between 2% and 30% had little effect

on LF scoring or the ability to fit LED curves to these data,

suggesting that these methods are robust to differences in cell

seeding density (Figure S2C).

We hypothesized that the intensity of a lethal stimulus and ge-

netic background would be two key factors influencing cell death

kinetics. To test this hypothesis we examined the response of

WTN and DKON MEFs to different concentrations of the pro-

apoptotic DNA topoisomerase I inhibitor camptothecin (Cpt).

For all conditions, mKate2+ and SG+ objects were counted every

2 hr for a total of 120 hr (Figure 2B). The resultant LF scores were

visualized using what we refer to as concentration by time plots

and summarized across Cpt concentrations using LFmax and

AUC values (Figures 2C–2E). Cpt triggered substantial dose-

dependent lethality in both WTN and DKON MEFs, resulting in

similar maximal lethality (i.e., LFmax) for all Cpt concentrations in

both cell lines (Figure 2D). Using the LED model we fit unambigu-

ous curves to themajority of LF scores over timeand extractedDO

and DR values (Figures 2F–2H). Simulations showed that longer

time courses and higher LFmax values improved the confidence

in the estimates of both DO and DR (Figure S2D), and in all exper-

iments we excluded any LED model fits that were ambiguous

(Table S1 contains summary statistics for all curve fits in this

work). Increasing Cpt concentrations resulted in shorter DO times

and higher DR rates, up to a concentration of �1 mM, at which

point cell death kinetics plateaued, albeit at different levels in

WTN versus DKON MEFs. For example, in response to 1.25 mM

Cpt, DO was 23 hr earlier (11 versus 34 hr) and DR was 3.1 times

faster (0.068 versus 0.022 LF/hr) in WTN versus DKON MEFs.

Similar results were obtained in WTN and DKON MEFs treated

with the DNA topoisomerase II inhibitor etoposide (Etop) (Fig-

ure S2E). Thus, Bax and Bak have an important role governing

cell death kinetics in response to topoisomerase inhibition.

Of note, in these experiments we observed the highest abso-

lute SG+ counts in control (DMSO)-treated WTN MEFs (e.g.,

1831 ± 120 Obj/mm2, mean ± SD at t = 120 hr) (Figure 2B). This

was explained by: (1) the substantial proliferation that occurred in

these cultures, which increased the number of live cells in the

population subsequently ‘‘available’’ to die, and (2) the fact that

these cultures quickly reached 100% confluence, which likely

triggered overcrowding-induced cell death (Figures 2B and

S2F). The later onset and slower maximal rate of this crowding-

associated cell death was typically distinct from the earlier onset

and more rapid kinetics of Cpt- or Etop-induced cell death (Fig-

ures 2G, 2H, and S2F). However, WTN MEFs treated with

20 nMCpt proliferated substantially before the onset of cell death

(Figures 2B and S2F), and DO and DR values under this condition

was more similar to the kinetics observed in DMSO-treated cells

than to cells treated with higher concentrations of Cpt (Figures

2G and 2H). Thus, at sub-lethal compound concentrations,

high cell densities and associated stresses (e.g., nutrient depriva-

tion) may contribute to the observed cell death kinetics.
Cell Systems 4, 1–11, June 28, 2017 3
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Figure 2. Quantifying Cell Death Kinetics

(A) Overview of data integration and summariza-

tion. Live and dead cell counts over time (n) are

used to compute the lethal fraction (LF). Where

appropriate, LF scores over time are parameter-

ized using a lag exponential death (LED) model

and two values are extracted: the timing of cell

death onset (DO) and the maximal cell death

rate (DR).

(B) Plots of mKate2+ and SG+ counts over time for

WTN and DKON MEFs treated with camptothecin

(Cpt) or DMSO. Each colored line represents

counts for a different compound concentration.

(C) LF plots computed from the data in (B).

(D and E) Maximum LF score (LFmax) and area

under the curve (AUC) values obtained from LF

curves in (C).

(F) LED curves fit to the data in (C).

(G and H) DO and DR parameter values for LED

curves in (F). The star (*) indicates that 20 nM Cpt

treatment produced ambiguous LED curve fits in

DKON MEFs.

In (D)–(H) horizontal dotted lines indicate the

average value of the vehicle (DMSO)-treated

populations for comparison. LED curves could not

be fit to vehicle-treated DKON MEFs. Results in

(B–F) are the average of three independent bio-

logical replicates. For clarity, in (B, C, and F) only

mean values are shown. Error bars in (D, G, and H)

represent 95% confidence intervals (95% CI).
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Large-Scale Analysis of Cell Death Kinetics
Cell death kinetics vary between lethal perturbations (Grootjans

et al., 2016; Hafner et al., 2016; Harris et al., 2016; Tyson et al.,

2012). However, the extent of this variability, whether different

classes of lethal perturbations are associated with unique cell

death kinetics, and the effect of genetic background on these

properties, is not well understood. To investigate these ques-

tions, and explore the use of STACK in a high-throughput setting,

we used STACK to profile cell death in U-2 OS osteosarcoma

cells and T98G glioblastoma cells treated with 1,833 different

bioactive compounds, including approved drugs, investigational

anti-cancer agents, and natural products, at a fixed concentra-

tion of 5 mM (see STAR Methods and the online Data Repository

for library details). These two cell lines were useful for these

studies as they are genotypically distinct, suitable for imaging,

and frequently used in cell death research (Forbes et al., 2011;

Nakano and Vousden, 2001; Potapova et al., 2001).

Cells seeded in 384-well plates were exposed to library com-

pounds and imaged every 2 hr for 118 hr (U-2 OSN) or every 4 hr

for 96 hr (T98GN). High quality data were obtained for 1,885 con-

ditions in U-2 OSN cells (79 DMSO-negative controls, 1,806 test

compounds) and 1,906 conditions (87 DMSO-negative controls,

1,819 test compounds) in T98GN cells (see online Data Reposi-

tory for all live and dead cell counts from both experiments).

Most tested compounds were not lethal to either cell line;

plate-based LFmax thresholds and an absolute minimum LFmax

cutoff of 0.5 (see STAR Methods) were used to identify 140

high-confidence lethal compounds in U-2 OSN and a partially

overlapping set of 140 high-confidence lethal compounds in
4 Cell Systems 4, 1–11, June 28, 2017
T98GN cells (Figure 3A and Table S2). Unambiguous LED model

fits were obtained for 139/140 compounds from U-2 OSN cells

and 136/140 compounds from T98GN cells. Manual inspection

indicated that three compounds with ambiguous fits in T98GN

cells (elaiophylin, BGT226, and dioscin) initiated cell death

immediately upon compound addition. These compounds

were therefore assigned DO values = 1 hr, and ultimately in-

cluded in a set of 79 high-confidence lethal compounds common

to both cell lines (Figure 3A and Table S2). These structurally and

mechanistically diverse compounds provided a useful test set

with which to explore how cell death kinetics varied by com-

pound, compound class, and cell line.

The 79 common high-confidence lethal compounds triggered

cell death with similar overall potency (i.e., LFmax) in both U-2

OSN and T98GN cells (Figures S3A and S3B). However, the

kinetics of cell death induced by these compounds varied greatly

in both U-2 OSN cells (ranges, DO = 1–73 hr; DR = 0.005–

1.4 LF/hr) and T98GN cells (ranges, DO = 1–55 hr; DR = 0.013–

0.2 LF/hr). DO times for individual compounds were correlated

between U-2 OSN and T98GN cells (Spearman r = 0.48, p <

0.0001), suggesting that the timing of cell death onset was

largely dictated by the lethal mechanism of action of each com-

pound (Figure 3B). Conversely, DR rates for individual com-

pounds were not correlated between U-2 OSN and T98GN cells

(Spearman r = 0.04, p > 0.05), indicating that for a given lethal

compound the maximal rate of cell death was highly influenced

by genetic background (Figure 3B). DO and DR were negatively

correlated in both cell lines (U-2 OSN = �0.43, T98GN = �0.54,

p < 0.001 for both comparisons), indicating that, in both U-2



A

60 80 60

T98GN U-2 OSN

Plate-specific
LFmax thresholds

Identification of
lethal compounds

+1,833 bioactive
compounds (5 μM)

Profile cell death
using STACK

LED model
fitting (79/80)

Common
high-confidence

lethal compounds

D

U
-2 O

S
N

Inhibitor target:

HSP90
Microtubule

HDAC
Proteasome

0 25 50
HSP90

Microtubule
HDAC

Proteasome

DO (h) 0.0
0
0.0

6
0.1

2

DR (LF/h)

T98G
N

***
**

*

*
***

*
***

***
**

**
***

*

B

0 30 60
0.00

0.11

0.22

DO (h)
D

R 
(L

F/
h) r = -0.54***

T98GNC U-2 OSN

r = -0.43***

0 40 80
0.0

0.1

0.2

DO (h)

D
R 

(L
F/

h)

r = 0.04 (ns)r = 0.48***

0.0
1 0.1 1

0.001
0.1
10

T98GN

U
-2

 O
SN

DR (LF/h)

0 40 80
0

40
80

T98GN

U
-2

 O
SN

DO (h) Figure 3. Large-Scale Comparative Anal-

ysis of Cell Death Kinetics
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high-confidence lethal compounds.

(B) DO and DR in T98GN versus U-2 OSN

cells for the 79 common high-confidence lethal
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(C) DO versus DR in T98GN and U-2 OSN cells for

the 79 common high-confidence lethal com-
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OSN and T98GN cells, when cell death onset is later it tends to

occurs with a lower maximal rate (Figure 3C).

We investigated in greater detail whether cell death kinetics

varied for a set of highly lethal compounds. For this comparison

we focused on compounds from four highly lethal (i.e., median

LFmax > 0.7) compound classes: proteasome inhibitors (n = 8),

heat shock protein 90 (HSP90) inhibitors (n = 9), histone deace-

tylase (HDAC) inhibitors (n = 8), and tubulin/microtubule inhibi-

tors (n = 8). Compounds from each class tended to cluster

together with characteristic DO and DR values that, nonetheless,

varied significantly between compound class and cell line (Fig-

ure 3D). For example, in both cell lines, proteasome inhibitors

triggered cell death with a significantly shorter median DO (U-2

OSN = 18 hr, T98GN = 15 hr) and higher median DR (U-2 OSN

DR = 0.055 LF/hr, T98GN DR = 0.054 LF/hr) than HSP90 inhibitors

(DO U-2 OSN = 37 hr, T98GN = 27 hr; DR U-2 OSN = 0.022 LF/hr,

T98GN = 0.019 LF/hr) (Kruskal-Wallis H test with Dunn’s multiple

comparisons tests, p < 0.05 for all comparisons) in both cell lines.

By contrast, proteasome inhibitors triggered cell death with

shorter DO than HDAC inhibitors in T98GN cells (Mann-Whitney

U test, both p < 0.01) but not U-2 OSN cells (Mann-Whitney U

test, both p > 0.05). In a final example, for microtubule inhibitors,

median DO was significantly longer and median DR significantly

lower in U-2 OSN cells (DO = 36 hr, DR = 0.015 LF/hr) compared

with T98GN cells (DO = 19 hr, DR = 0.074 LF/hr) (Mann-Whitney U

test, both p < 0.001). These and other significant differences
indicate that lethal compounds trigger

cell death with compound-specific and

cell line-specific kinetics that can be

readily distinguished using STACK.

Compound Interactions Alter Cell
Death Kinetics
Sometimes the combination of two com-

pounds can produce a cell death pheno-

type that deviates significantly from ex-

pectations based on the known effects
of each individual compound (Lehár et al., 2008). We reasoned

that compound interactions might be reflected in changes in

cell death or cell death kinetics detectable using STACK. As a

case study, we investigated in T98GN cells how a sub-lethal con-

centration of the alkylating agent temozolomide (TMZ, 400 mM)

modulated cell death induced by our library of 1,833 bioactive

compounds (Figure 4A). As above, cell death profiles were ac-

quired using STACK, and the results compared with the previous

dataset obtained with this library in T98GN cells in the absence of

TMZ. As the lethality of a given compound could be modulated

substantially by TMZ, this precluded the use of LED curve fits.

We therefore searched for interactions across all 1,833 com-

pounds using AUC and LFmax values derived directly from LF

scores over time. Computing the expected effect of compound

combinations is not trivial and there is no consensus about the

best method to employ (Fitzgerald et al., 2006; Lehár et al.,

2008). We therefore modeled the expected effect of each drug

combination with a simple additive model, using the experimen-

tally observed AUC or LFmax values for each treatment alone as

input (Figure 4A; Table S3) (see STARMethods). Other metrics of

cell death or models of compound interaction (e.g., multiplicative

models) may yield alternative predictions of enhancing or sup-

pressive interactions but were not explored here.

Significant compound interactions were identified using two

methods. First, we used the behavior of the control treatments

(Figure 4B, black dots) to establish conservative thresholds
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Figure 4. Identifying and Quantifying Com-

pound Interactions

(A) T98GN cells treated with 1,833 bioactive com-

pounds (5mM)± temozolomide (TMZ, 400 mM)were

imaged every 4 hr for 96 hr. Lethal fraction scores

werecomputed, andAUCandLFmax values for TMZ

(T) alone,andeach librarycompound (X) alone,were

used to compute the expected AUC or LFmax

for each combination, using an additive model.

Deviations (D) between the expected and observed

AUC or LFmax values were then computed.

(B) DLFmax versus DAUC values for 1,819 com-

pounds that passed quality control measures.

Enhancing (n = 98) and suppressive (n = 7) in-

teractionswere identifiedusing statistical thresholds

(dotted lines) for significant deviation between ex-

pected and observed effects. A known enhancing

interactionbetweenTMZandRG2833 ishighlighted.

(C) Compound classes exhibiting significant

interaction with TMZ identified using compound

set enrichment analysis (false discovery rate [FDR]

q < 0.05). The number of compounds (# Cmpd)

within each class is indicated at right. NRTK,

non-receptor tyrosine kinase; PARP, poly (ADP)

ribose polymerase; RTK, receptor tyrosine kinase;

HDAC, histone deacetylase; HMGCR, 3-hydroxy-

3-methylglutaryl-CoA reductase; HSP90, heat

shock protein 90.

(D and E) Plots of DO versus DR for select lethal compound classes ± TMZ. Each dot represents a single compound for which suitable LED curve fits could be

obtained ± TMZ. The number of compounds are: PARP inhibitors (n = 9), HDAC inhibitors (n = 22), microtubule inhibitors (n = 9), proteasome inhibitors (n = 8), and

HSP90 inhibitors (n = 10). In (D) and (E) results with +DMSO are the same as those presented in Figure 3D.
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(jDAUCj > 8.8, jDLFmaxj > 0.23) for significant enhancer and

suppressor interactions (see STARMethods). This analysis iden-

tified 98 enhancing interactions, including known interactions

between TMZ and the HDAC inhibitor RG2833/RGFP109

(DAUC = 52, DLFmax = 0.76) and the dual mechanistic target of

rapamycin (mTOR)/phosphatidylinositol 3-kinase (PI3K) inhibitor

BEZ235 (DAUC = 9.7, DLFmax = 0.27) (Li et al., 2016; Yu et al.,

2015) (Figure 4B). Second, we used DAUC values and com-

pound set enrichment analysis (Liu et al., 2013) to identify com-

pound classes significantly modulated by TMZ. This analysis

identified four compound classes for which the lethality was

significantly enhanced by TMZ (false discovery rate q < 0.05):

non-receptor tyrosine kinase inhibitors, poly (ADP-ribose) poly-

merase (PARP) inhibitors, receptor tyrosine kinase (RTK) inhibi-

tors, andHDAC inhibitors (Figure 4C). PARP andHDAC inhibitors

are known enhancers of TMZ-induced death (Gojo et al., 2016;

Lee et al., 2012), providing further confidence that the methods

employed here can recover true compound interactions. For

two compound classes we obtained unambiguous LED fits for

a suitable number of compounds both with and without TMZ,

enabling a direct assessment of the effect of TMZ on cell death

kinetics. For PARP inhibitors (n = 9), the addition of TMZ signifi-

cantly shortened median DO and significantly increased median

DR (Mann-Whitney U test, p < 0.01 for both comparisons), while

for HDAC inhibitors (n = 22) TMZ had no effect on DO but signif-

icantly increased DR (Mann-Whitney U test, p < 0.01) (Figure 4E).

In addition to the above enhancing interactions, we identified

apparent suppressive interactions between TMZ and four com-

pound classes: microtubule inhibitors, HSP90 inhibitors, protea-

some inhibitors, and 3-hydroxy-3-methylglutaryl-CoA reductase
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inhibitors (Figure 4C). In the presence of TMZ, DR was signifi-

cantly lower for microtubule inhibitors and DO significantly

lengthened for HSP90 inhibitors (Mann-Whitney U test, p <

0.001 for both comparisons) (Figure 4E). TMZ actually increased

DR when combined with proteasome inhibitors (Figure 4E),

and in this case the detection of an apparent suppressive

interaction is best explained by the fact that proteasome in-

hibitors were already maximally lethal alone (LFmax � 1) and

lethality could not be further enhanced by TMZ (Figure S4).

These results indicate that compound interactions modify cell

death kinetics in a compound class-specific manner that can

be detected using STACK.

Identification and Analysis of Rapid-Onset Lethal
Compounds
Cell death kinetics could provide a means of classifying com-

pound activity that is complementary to traditional dose-depen-

dent metrics and help identify lethal compounds with unusual

mechanisms of action. To explore this concept, we ordered all

high-confidence lethal compounds (U-2 OSN, n = 80; T98GN,

n = 79) by DO and empirically defined 13 compounds in the

lowest 25th percentile (DO % 15.7 hr in U-2 OSN, DO % 15.6 hr

in T98GN) as rapid-onset lethals (ROLs), as well as seven com-

pounds in the highest 75th percentile (DO > 35.3 hr in U-2 OSN,

DO > 27.3 hr in T98GN) as slow onset lethals (Figure 5A; Table

S4). For the remainder of this work we focused on the ROL

compounds.

ROL compounds included three proteasome inhibitors (carfil-

zomib, Btz, and MG132), but otherwise lacked common struc-

tural features or canonical targets (Figures 5B and 5C). Several
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Figure 5. Identifying Rapid-Onset Lethal

Compounds

(A) 13 rapid-onset lethal (ROL) compounds

defined empirically as those compounds within

the lowest 25th percentile for DO values from the

sets of high-confidence lethal compounds identi-

fied in U-2 OSN and T98GN.

(B) Structures of the 13 ROL compounds. Putative

primary targets are in parentheses. Note: kinase

inhibitors typically have >1 target in cells.

(C) LF scores over time for each ROL compound

(colored orange) compared with other tested

compounds in the same putative target class

(colored gray). The vertical dotted lines indi-

cate the cell line-specific DO 25th percentile ROL

cutoffs.

(D) Median modulatability (M) score of cell death in

WTN versus DKON MEFs (WTN/DKON) induced by

the indicated ROL compounds and controls, each

tested across a 10-point, 2-fold dilution series.

Modulatability was also assessed at a single lethal

concentration ± Q-VD-OPh. Results in (D) are from

three independent biological replicates.
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ROL compounds were members of larger compound classes

that shared the same putative protein target(s) yet exhibited

distinct cell death kinetic profiles. For example, BGT226 was

the only dual PI3K/mTOR inhibitor (n = 9) that was lethal in U-2

OSN cells (Figure 5C). Likewise the mTOR inhibitor Torin2, the

JAK inhibitor pacritinib, and the RTK inhibitor foretinib caused

greater or more rapid cell death than other members from the

same putative target class in one or both cell lines (Figure 5C).

Protein kinase inhibitors are rarely specific (Anastassiadis

et al., 2011; Taipale et al., 2013) and we infer that these com-

pounds trigger a ROL phenotype by engaging unconventional

targets or mechanisms.

The ROL phenotype could result from rapid activation of a spe-

cific cell death pathway, direct physical disruption of the plasma

membrane or potentially other mechanisms (Palchaudhuri et al.,

2015;Wolpaw et al., 2011). To begin to distinguish between these

possibilities, we studied four ROL compounds, BGT226, pacri-

tinib, the natural product macrolide antibiotic elaiophylin, and

the metallophore ZP, in WTN and DKON MEFs. Each compound
was tested in a 10-point, 2-fold dose-

response series and the ratio of STACK-

derived AUC values in WTN versus DKON

MEFs was used to define a modulat-

ability (M) score. M scores >1 indicated

the induction of Bax/Bak-dependent

apoptosis, while M scores z1 indicated

Bax/Bak-independent cell death. Treat-

ment with high concentrations of pacriti-

nib (20 mM), elaiophylin (R10 mM), and

BGT226 (R5 mM) was associated with

the near-instantaneous induction of cell

death upon compound addition and M

scores near 1 (Figures S5A and S5B).

However, median M scores across all

concentrations indicated that pacritinib

(M = 1.9), elaiophylin (M = 2.1), and
BGT226 (M = 2.0) triggered Bax/Bak-dependent apoptosis at

lower concentrations (Figure 5D). Unlike these compounds, ZP-

induced cell death was not modulated at any concentration by

the deletion of Bax and Bak (M = 1.0) (Figures 5D, S5A, and

S5B). Likewise, ZP-induced death was not modulated by co-

treatment with the pan-caspase inhibitor Q-VD-OPh (25 mM)

(M= 1.0) (Figure 5D). Unlike elaiophylin and BGT226, ZP triggered

cell death with a clear delay in human cancer cell lines (Fig-

ure S5C), inconsistent with direct membrane permeabilization.

Rather, these observations suggested that ZP triggered rapid-

onset cell death through a specific biochemical mechanism.

We investigated further the mechanism of ZP-induced rapid-

onset lethality. These studies were performed in human T98GN

and A549N cancer cells that, compared with MEFs, exhibited a

more substantial delay in cell death onset, which facilitated func-

tional studies (Figure 6A). Using inductively coupled plasma

mass spectrometry we found that ZP treatment increased intra-

cellular elemental Zn levels in both cell lines, in amanner that was

sensitive to the zinc chelator diethylenetriaminepentaacetic acid
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Figure 6. Differences in Basal Energy Meta-

bolism Explain Differences in DO

(A) Cell death kinetics in T98GN and A549N cells in

response to zinc pyrithione (ZP). Lethal fraction

scores and LED curves are plotted.

(B) Intracellular Zn, Fe, and Cu levels measured

using inductively coupled plasma mass spec-

trometry following ZP treatment (10 mM, 2 hr). *p <

0.05, **p < 0.01; ns, not significant; two-way

ANOVA with Sidak multiple comparison tests.

(C) ATP levels over time + ZP (10 mM) ± ethyl

pyruvate (Et-Pyr). All results are normalized to

DMSO-treated controls at t = 0 hr.

(D) Lethal fraction at 48 hr in T98GN and A549N

cells treated with ZP or Btz ± Et-Pyr or a-ketobu-

tyrate (a-KB).

(E and F) Measurement of oxygen consumption

rate (OCR) (E) and extracellular acidification rate

(ECAR) (F) using Seahorse technology. Treat-

ments were DMSO, ZP (10 mM), or carbonyl cya-

nide-4-(trifluoromethoxy)phenylhydrazone (FCCP,

2 mM) + oligomycin (Oli, 1 mM). The vertical dotted

line indicates the time (60 min) of compound in-

jection. OCR and ECAR are normalized to

mKate2+ counts at the start of the experiment.

Data represent mean ± SD from four or five (A),

three (B, E, and F), or four to six (C and D) inde-

pendent biological replicates.
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(DTPA), without affecting the levels of other metals (Fe, Cu) (Fig-

ures 6B and S6A). DTPA also specifically inhibited ZP-induced

cell death in both cell lines, without affecting cell death induced

by Btz or the improved erastin analog erastin2 (Figures S6A and

S6B). Consistent with results obtained in MEFs, a pan-caspase

inhibitor (Q-VD-OPh) had no ability to block ZP-induced cell

death in either cell line, and a ferroptosis-specific inhibitor (fer-

rostatin-1) was likewise ineffective (Figures S6B). Thus, in both

T98GN and A549N cells, ZP treatment specifically increases

intracellular Zn leading to caspase-independent cell death

through a pathway distinct from ferroptosis.

Zn overload is reported to disrupt cellular bioenergetics and

deplete ATP (Carraway and Dobner, 2012; Dineley et al., 2003;

Kelland et al., 2004; Lamore et al., 2010; Sheline et al., 2000).

Indeed, ZP treatment resulted in rapid ATP depletion in both

T98GN and A549N cells, a response not observed in response

to Btz or Era2 (Figures 6C and S6C). ZP-induced ATP depletion

and cell death were prevented by the addition of ethyl pyruvate

(20 mM) or alpha-ketobutyrate (20 mM) (Figures 6C and 6D),

compounds that can act as electron acceptors to promote cyto-

solic regeneration of nicotinamide adenine dinucleotide (NAD+)

from NADH by lactate dehydrogenase (Sullivan et al., 2015).

NAD+ is essential for glycolytic ATP synthesis and these results

suggested that a defect in glycolysis could be responsible for

rapid ATP depletion and cell death following ZP treatment. Using

Seahorse technology we observed that ZP treatment (10 mM)

caused an immediate drop in the oxygen consumption rate,

and a delayed inhibition of extracellular acidification (ECAR), a
8 Cell Systems 4, 1–11, June 28, 2017
measure of glycolysis, in both cell lines (Figures 6E and 6F).

We noted that ECAR was inhibited more rapidly in T98GN versus

A549N cells. This suggested that T98GN cells were less able to

mobilize spare glycolytic capacity in response to the inhibition

of oxidative phosphorylation (OXPHOS) than A549N cells.

Indeed, treatment with a combination of carbonyl cyanide-4-(tri-

fluoromethoxy)phenylhydrazone and oligomycin to maximally

stimulate glycolysis substantially elevated ECAR in A549N but

not T98GN cells (Figure 6F). Thus, T98GN cells are likely less

able to adapt to inhibition of OXPHOS with a compensatory in-

crease in glycolysis, deplete ATP more quickly, and die with an

earlier onset compared with A549N cells (Figures 6A and 6C).

Ultimately, however, both T98GN and A549N cells succumb

quickly to the combined inhibition of OXPHOS and glycolysis.

DISCUSSION

We developed STACK as a large-scale method to quantify cell

death kinetics in mammalian cell populations. STACK integrates

counts of both live (mKate2+) and dead (SG+) cells into a single

kinetic curve that can be parameterized using the LED model.

Cell death kinetics can then be minimally summarized using

two key parameters, DO and DR. Using STACK we have quanti-

fied the kinetics of apoptotic and non-apoptotic cell death

induced by diverse lethal stresses in multiple cell lines. This

method therefore appears to be highly generalizable and,

when combined with high-throughput microscopy, can be

used to examine cell death kinetics for over 1,800 different
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conditions in a single experiment. We envision that STACK will

be highly complementary to other recently developed kinetic ap-

proaches to measuring cell viability (Hafner et al., 2016; Harris

et al., 2016; Tyson et al., 2012).

Compounds with similar overall maximum lethality (i.e., LFmax)

exhibited significant variation in DO and DR. For example, multi-

ple proteasome inhibitors, HDAC inhibitors, microtubule inhibi-

tors, and HSP90 inhibitors tended to cluster around distinct,

characteristic DO and DR values. The observed clustering was in-

dependent of compound structure and observed despite the fact

that each compound was tested at a single concentration (5 mM).

Our observations suggest that the kinetics of lethal compound-

induced cell death are fundamentally constrained: DO cannot

be reduced below a certain minimum threshold, while DR cannot

be increased above a certain maximum limit, no matter how

much compound is employed or how potent a compound may

be, as defined by traditional dose-based metrics.

DO andDR quantify cell death kinetics at the population level. A

goal of ongoing and future work is to explain the observed differ-

ences in DO and DR between lethal compounds and cell lines at

the cellular andmolecular levels. DO captures the average length

of time between the addition of a lethal perturbagen and the

initial onset of widespread membrane permeabilization within

the population. Factors that contribute to DO likely include the

rates of compound uptake and metabolism, the extent of target

engagement, the time required following target engagement to

deplete essential metabolites below a minimum threshold or

accumulate stress to lethal levels, and the time needed to trans-

duce a pro-death signal to the cell death execution machinery.

DR expresses the variability in cell death onset between individ-

ual cells within a population. These differences, which reflect

cell-to-cell variability in lethal compound activity, may be due

to differences in the metabolic state, cell-cycle phase, gene

expression, or signaling pathway activity of individual cells at

the time of compound addition (Fallahi-Sichani et al., 2013;

Paek et al., 2016; Roux et al., 2015; Sarosiek et al., 2013; Sharma

et al., 2010; Spencer et al., 2009; Thorburn et al., 2014). One

prediction is that cell death mechanisms with relatively few reg-

ulatory inputs will result in cell death with a high DR relative to

mechanisms with more layers of regulation.

Using STACK we empirically defined a set of compounds that

induced rapid-onset lethality. At high concentrations, certain

compounds (e.g., elaiophylin, BGT226) triggered near-instanta-

neous cell death, most consistent with direct plasma membrane

permeabilization (Wolpaw et al., 2011). By contrast, ZP triggered

a ROL phenotype via rapid ATP depletion and the induction of

non-apoptotic cell death. Non-apoptotic cell death was not,

however, synonymous with the ROL phenotype. Proteasome in-

hibitors such as Btz induce rapid-onset lethality but, unlike zinc

overload, trigger classic Bax/Bak-dependent apoptotic cell

death (e.g., Figure 1D). The specific mechanism linking protea-

some inhibition to the initiation of apoptosis may involve the

depletion of intracellular amino acid pools (Suraweera et al.,

2012). Thus, the rapid depletion of essential metabolites, such

as ATP or amino acids, could be a commonmechanism that trig-

gers rapid-onset lethality.

By directly counting both live and dead cells STACK over-

comes technical artifacts associated with indirect assays of cell

viability that measure population metabolic activity, which can
be altered by compound treatment independent of changes in

live cell number (Chan et al., 2013). However, unusual nuclear

morphologies, prolonged nuclear retention of mKate2 in dead

cells, or extremely rapid loss of SG from dead cells, could

confound the detection of live and dead cells. Careful optimiza-

tion of image analysis routines is essential to the success of this

method. Currently, the analysis of cell death using STACK is opti-

mized for adherent, sub-confluent cell populations. Quantifying

the kinetics of cell death in non-adherent cells or in fully confluent

cultures will require further technical developments. These devel-

opments will expand the range of conditions where STACK can

be used to quantify mammalian population cell death kinetics.
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(Nuc::mKate2)

Essen BioSciences Cat# 4265
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Camptothecin Fisher Scientific Cat# AC276721000

Etoposide Sigma-Aldrich Cat# 12-261-00

Thapsigargin Sigma-Aldrich Cat# T9033

Bortezomib Fisher Scientific Cat# NC0587961

Zinc Pyrithione Selleck Chemicals Cat# S4075

Diethylenetriaminepentaacetic acid Sigma-Aldrich Cat# D6518

Ethyl Pyruvate Sigma-Aldrich Cat# E47808

1833 Member Bioactive Compound Library (obtained June 2014) Selleck Chemicals Cat# L1700

Temozolomide Selleck Chemicals Cat# S1237

Fe ICP-MS Standard ACROS Organics Cat# AC196051000

Cu ICP-MS Standard ACROS Organics Cat# AC195931000

Zn ICP-MS Standard Fisher Scientific Cat# PLZN2-2Y

Critical Commercial Assays

CellTiter-Glo Luminescent Cell Viability Assay Promega Cat# G7570

Deposited Data

Description of the 1,833-member bioactive compound library Mendeley Data http://dx.doi.org/10.17632/3pnv5wh5jm.1

U-2 OSN cells + 1,833 bioactive compound library Mendeley Data http://dx.doi.org/10.17632/3pnv5wh5jm.1

T98GN cells + DMSO + 1,833 bioactive compound library Mendeley Data http://dx.doi.org/10.17632/3pnv5wh5jm.1

T98GN cells + temozolomide (400 mM) + 1,833 bioactive compound library Mendeley Data http://dx.doi.org/10.17632/3pnv5wh5jm.1

Experimental Models: Cell Lines

HT-1080 ATCC CCL-121; RRID: CVCL_0317

U-2 OS ATCC HTB-96; RRID: CVCL_0042

T98G ATCC CRL-1690; RRID: CVCL_0556

A549 ATCC CCL-185; RRID: CVCL_0023

Bax+/+ Bak+/+ SV40 mouse embryonic fibroblasts (MEFs) ATCC CRL-2907; RRID: CVCL_U630

Bax-/- Bak-/- SV40 MEF ATCC CRL-2913; RRID: CVCL_U626

HT-1080N This Paper N/A

U-2 OSN This Paper N/A

T98GN This Paper N/A

A549N This Paper N/A

Bax+/+ Bak+/+ MEFN (WTN) This Paper N/A

Bax-/- Bak-/- MEFN (DKON) This Paper N/A

Software and Algorithms

Compound Set Enrichment Analysis. Described in Liu et al., (2013)

Proc Natl Acad Sci

Broad Institute genepattern.broadinstitute.org

R N/A https://www.r-project.org/

Prism GraphPad Software N/A

Excel Microsoft N/A
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CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Scott

Dixon (sjdixon@stanford.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell Lines
HT-1080, T98G, A549, U-2 OS, Bax+/+ Bak+/+ MEF and Bax-/- Bak-/- MEF cell lines were obtained from ATCC (Manassas, Virginia,

USA). Cell lines were thawed, expanded for one passage and frozen in multiple aliquots that were used in subsequent experiments.

All cell lines were grown in humidified tissue culture incubators (Thermo Scientific) at 37oC with 5% CO2. T98G, A549, Bax+/+ Bak+/+

MEF and Bax-/- Bak-/- MEFs and derivatives were grown in DMEM High-Glucose medium (Cat. No. MT-10-013-CV, Corning Life

Sciences, Tewksbury, MA, USA) supplemented with 10% FBS (Cat. No. 26140-079, Life Technologies/Thermo Fisher Scientific,

Carlsbad, CA, USA). HT-1080 cells were grown in the same media additionally supplemented with 1% non-essential amino acids

(Life Technologies/Thermo Fisher Scientific). U-2 OS cells were grown in McKoy’s 5A medium supplemented with 10% FBS. Except

where indicated, all media were supplemented with penicillin and streptomycin (Life Technologies/Thermo Fisher Scientific). All

cultures were mycoplasma free as confirmed by the absence of bacterial staining when cells were incubated in medium containing

the DNA intercalating dye SYTOX Green. Key cancer-associated genes mutated in T98G cells are: TP53, PTEN, FAT4, NOTCH2,

AKAP9, CLTCL1, PER1, TCF12, FBXO11, KMT2C, ZFHX3 and HLA-A, in U-2 OS cells are: CTNNB1, PREX2, PTPN13, CCND2,

LIFR, FAT1, TSC2, SLC34A2, ZFHX3, TET2 and PPM1D, and in A549 cells are: KRAS, KEAP1, SUFU, ATR, STK11, POLE,

SMARCA4, CARD11, FUS, TBL1XR1, USP6, ERC1, CBL, FH, HIP1, PCSK7, ZFHX3 and FLT3 (‘‘cancer census genes’’, http://

cancer.sanger.ac.uk/cosmic, (Forbes et al., 2011)).

METHOD DETAILS

Nuc::mKate2-Expressing Cell Lines
Polyclonal HT-1080, T98G, U-2 OS, A549, Bax+/+ Bak+/+ wild-type (WT) MEF and Bax-/- Bak-/- double knockout (DKO) MEF cell lines

expressing nuclear-localizedmKate2 (Nuc::mKate2) were generated by lentiviral transduction of a viral vector, at anM.O.I. of 0.3, that

directed the expression of nuclear-localized mKate2 (Essen BioSciences, Ann Arbor, Michigan, USA, (Artymovich and Appledorn,

2015)). Polyclonal mKate2-expressing populations were selected using puromycin (1.5 mg/mL, 48-72 h).

Cell Seeding and Compound Addition
Experiments were performed in a high-density, 384-well format. On Day -1 cells grown in T-175 flasks (Fisher Scientific) were trypsi-

nized and counted using a Cellometer Auto T4 cell counter (Nexcelom, Lawrence, MA, USA). 40 mL of cell solution containing the

appropriate concentration of cells (e.g. 1,500) was added manually to each well of a glass bottom, 384-well tissue culture plates

(Corning, Cat. No. 3712) using a multichannel pipette. The plate was then spun briefly (500 rpm, 2 sec) to settle the cells evenly at

the bottom of thewells. Cell death sensitivity can bemodulated by high cell number and confluence (Hafner et al., 2016) andwe there-

fore aimed for a starting confluence of less than 50% at the time of drug addition on Day 0 in all experiments. On Day 0, all control and

test compounds were prepared in growth medium containing 20 nM SYTOX Green (Life Technologies/Thermo Fisher Scientific).

10-point, 2-fold dilutions were prepared in 384-well storage plates (Thermo Scientific AB-0781) and compounds were added using

either a multi-channel pipette or a Versette automated liquid handler configured with a six-position stage and 384-channel head

(Thermo Scientific).

Measurement of Cell Viability with PrestoBlue
In control experiments cell viability was measured in HT-1080N cells using resazurin (PrestoBlue, Life Technologies/Thermo Fisher

Scientific). The day before compound addition, 40 mL of cells were seeded into a 384-well plate at a concentration of 1,500 cells/well

and then treated with compounds. Following compound incubation, 10 mL of a 50/50 v/v medium/PrestoBlue solution was added to

each well using a Versette automated liquid handler (Thermo Scientific) and incubated for 2 hours in a tissue culture incubator main-

tained at 37�C with 5% CO2. Fluorescence readings were made using a Cytation3 multimode plate reader (BioTek, Winooski, VT,

USA) set to ex/em of 530/590 nm.

STACK Data Acquisition and Analysis
Acquisition of Population Images

In our current implementation, live and dead cell counts were obtained over time using an IncuCyte Zoom dual color live content im-

aging system (Model 4459, Essen BioSciences, Ann Arbor, USA) residingwithin a Thermo tissue culture incubator maintained at 37�C
with 5%CO2. Data were acquired using a 10x objective lens in phase contrast, green fluorescence (ex: 460 ± 20, em: 524 ± 20, acqui-

sition time: 400ms) and red fluorescence (ex: 585 ± 20, em: 665 ± 40, acquisition time: 800ms) channels. Images (1392 x 1040 pixels

at 1.22 mm/pixel) were acquired from each well at set time intervals. Data acquisition time per well was less than two seconds.
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Live and Dead Cell Counting and Confluence Measurements

Automated image analysis routines were empirically optimized for each cell line using the Zoom software package (V2016A/B) and

training data fromDMSOand lethal compound-treated samples. ThemechanismofmKate2+ protein loss from the nucleus during cell

death could involve disruption of nuclear import, increased nuclear membrane permeability or proteolytic destruction of the protein

(Faleiro and Lazebnik, 2000; Kihlmark et al., 2004) and may vary between cell lines and lethal perturbations. The detection of live and

dead cells was therefore optimized for each cell line. WTN MEF and DKON MEF populations were analyzed using a routine with the

following settings (in parentheses) to count mKate2+ objects (Parameter adaption, threshold adjustment: 1; Edge split on; Edge

sensitivity 50; Filter area min 50 mm2, maximum 2000 mm2; Eccentricity max 1.0) and SG+ objects (Parameter adaption, threshold

adjustment: 10; Edge split on; Filter areamin 30 mm2,maximum750 mm2; Eccentricitymax 0.9). In some experiments, double-positive

mKate2+/SG+ objects (overlaps) were identified by the overlap of red and green objects defined above (overlap area min 50 mm2).

HT-1080N, U-2 OSN and A549N populations were analyzed using a routine with the following settings (in parentheses) to count

mKate2+ objects (Parameter adaption, threshold adjustment: 1; Edge split on; Edge sensitivity 50; Filter area min 20 mm2, maximum

800 mm2; Eccentricity max 1.0) and SG+ objects (Parameter adaption, threshold adjustment: 10; Edge split on; Filter area min 5 mm2,

maximum 800 mm2; Eccentricity max 0.9). The nuclei of T98GN cells were more complex, and the following settings were used in

these cells to identify mKate2+ objects (Threshold adjustment: 2.5; Edge split on; Edge sensitivity -31; Hole fill 0; Filter area min

100 mm2, maximum 800 mm2; Eccentricity max 0.9) and SG+ objects (Threshold adjustment: 10; Edge split on; Edge sensitivity -5;

Hole fill 0; Filter area min 20 mm2, maximum 750 mm2; Eccentricity max 0.9). In some experiments we measured confluency of the

cultures (segmentation adjustment, background: 1.8; Cleanup, hole-fill: 400 mm2; Filter, minimum area: 200 mm2). mKate2+ and

SG+ counts, expressed as objects per mm2, and confluence measures, expressed as an overall percentage (0%–100%), were ex-

ported to Excel (Microsoft) for further processing. Counts more than 10-fold different than the one immediately preceding in the time

course were censored. This affected less than 0.001% of all counts and were due to transient technical issues with data acquisition

(e.g. an image out of focus for one scan). Widespread cell detachment prior to death, which would be detected by a decrease in

mKate2+ counts with no corresponding increase in SG+ counts, was not observed in these experiments.

Lethal Fraction Scoring

At any given time point n in a treatment time course (t = 0 / t = n), the lethal fraction (LF) is given by Equation 1.

LFt = n = 1� mKate2+
t = n�

SG+
maxt =0 / t = n

+ mKate2+
t = n

� (Equation 1)

Some treatments result in the loss of SG+ signals from long dead cell corpses. Thus, when computing the lethal fraction at a given

time the maximum number of SG+ objects from the start of that experiment is used. This equation does not consider SG+/mKate2+

double-positive cells separately. Large numbers of persistent SG+/mKate2+ double-positive cells would lead to an underestimation

of cell death. This potential confoundmust be accounted for when optimizing image segmentation and counting routines for each cell

line. The maximum lethal fraction, hereafter LFmax, equals to the highest individual LF score at any point in a time course and is ex-

tracted directly from a set of LF scores over time by applying the MAX function in Microsoft Excel 14.6.0 (Microsoft). Area under the

curve values were computed from LF curves over time using the trapezoidal method implemented in Prism 6.0h (GraphPad Soft-

ware, Inc).

Parameterization Using the Lag Exponential Death (LED) Model

LF scores over time were parameterization using the LED model given by Equation 2:

LFðtÞ= LF0 + ðLFP � LF0Þ
�
1� e�DRðt�DOÞ� (Equation 2)

Where t is time, DO is the time at which the exponential increase in LF begins, LF0 is the average LF value up to DO, LFP is the plateau

LF value, and DR is the maximum cell death rate. These calculations were performed using the plateau followed by one-phase as-

sociation function in Prism 6.0h (GraphPad Software), with DO unconstrained and LFP constrained to be % 1. LF0 was also left un-

constrained and can be non-zero due to background (basal) levels of cell death within a population, or in response to compounds that

initiate substantial cell death by the first measurement (e.g. ROLs). Three notes: (i) LFP approximate but do not equal LFmax values

derived directly from LF scores over time. LPP values are obtained from curves successfully fit with the LED model, and they cannot

be obtained in cases where the LEDmodel produces ambiguous fits. Thus, in this work we typically report the exact LFmax values; (ii)

different absolute levels of cell death (i.e. LFP) can be associated with the same DO or DR values. Fits flagged as ambiguous is Prism

were not used in these analyses. Fits to other models (e.g. sigmoidal) were likewise examined using Prism 6.0h.

Bioactive Compound Profiling and Analysis
Compound Library

Abioactive compound library (Cat. No. L1700) was obtained fromSelleck Chemicals (Houston, TX) and stored at -80�C. The details of
this library can be found in the Data Repository associatedwith thework. The library was re-formatted from 96-well to 384-well format

using a Versette automated liquid handler configured with a 96 channel pipetting head, and diluted to 2 mM in DMSO.

Data Collection

Data were collected as described above, with the following additional information. The day before compound addition, T98GN or

U-2 OSN cells were seeded into five 384-well plates at a concentration of 1,500 cells/well at a final volume of 40 mL. The next day
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compounds were added from freshly thawed library master stock plates using a Versette liquid handler equipped with a 384-channel

pipetting head. The final concentration of each library compound in each well was 5 mM. In one experiment with T98GN cells, library

compoundswere added tomedium containing 400 mMof temozolomide. Plateswere then imaged immediately and every 4 h (T98GN)

or 2 h (U-2 OSN) thereafter for a total of 96 h (T98GN) or 118 h (U-2 OSN). The experiment was carried out for longer in U-2 OSN cells as

they were observed to proliferate more slowly than T98GN.

Data Processing

All STACK data were exported as counts of SG+ andmKate2+ objects/mm2 and data files from each plate were re-organized using R

(r-project.org) and then analyzed further using Excel and Prism 6.0h. Eight library compounds that generated significant green back-

ground fluorescence in T98GN cells were identified by visual inspection of wells with high apparent starting SG+ counts (>50 Obj/mm2

at t = 0 or 4 h) in the absence of evident cell death, as judged by mKate2+ counts at t = 0 or 4 h, and removed from further analysis

(PHA-665752, idarubicin HCl, TSU-68, quinacrine 2HCl, Ro 31-8220mesylate, daunorubicin HCl, sunitinib malate, SU11274 and nin-

tedanib). In the U-2 OSN experiment, seven compounds were removed from the analysis for this reason (nintedanib, PHA-665752,

TSU-68, idarubicin HCl, SB216763, SU11274 and Ro 31-8220 mesylate). From both experiments we also eliminated a small number

of wells where variation in cell seeding resulted in < 50 or > 400mKate2+ Obj/mm2 at t = 0.We confirmed by ROUT analysis ((Motulsky

and Brown, 2006), Q = 1%) that this resulted in datasets free from cell number outliers.

Identification of High Confidence Lethal Compounds in U-2 OSN and T98GN Cells

For each screen the set of DMSO control populations (n = 79 for U-2 OSN, n = 87 for T98GN) distributed throughout all five assay

plates were used as negative controls and, more specifically, as ameans to assess background cell death (e.g. due to nutrient deple-

tion and overcrowding). These DMSOcontrols were normally distributed (D’Agostino & Pearson omnibus normality test,P > 0.05) and

therefore compounds with LFmax scores > 3 standard deviations (SD) from the mean of the DMSO controls were considered high

confidence lethal compounds. For the T98GN + DMSO experiment this corresponded to LFmax thresholds of 0.578, 0.514, 0.402,

0.554 and 0.595 for plates one to five, respectively; in U-2 OSN cells the corresponding thresholds were 0.073, 0.104, 0.103,

0.079 and 0.087 for plates one to five, respectively. The low values in the U-2 OSN experiment reflected the limited cell death expe-

rienced by U-2 OSN populations over the course of the experiment. Our goal was to examine only those compounds that produced

substantial lethality within the timeframes of the experiments. Therefore, to arrive at a final list of candidate lethal compounds we

applied a minimum LFmax > 0.5 cut-off to select only those compounds exhibiting at least 50% cell death. This eliminated four com-

pounds from plate three in the T98GN experiment, and a large number of compounds from the U-2OSN experiment with LFmax values

greater than the plate-specific 3xSD LFmax thresholds, but below 0.5. These weaker lethal compounds were not studied further here.

Comparative Analysis of Cell Death Kinetics in U-2 OSN and T98GN Cells

140 high-confidence lethal compounds were identified in both U-2 OSN and T98GN experiments. 80 were common to both exper-

iments, referred to as common high-confidence lethal compounds. LED models produced unambiguous fits to LF scores over

time for 139/140 compounds in U-2 OSN and 136/140 compounds in in T98GN. Three compounds (elaiophylin, BGT226 and dioscin)

triggered cell death with an essentially instantaneous onset in T98GN cells, resulting in ambiguous fits. Because these compounds

were clearly highly lethal, they were arbitrarily assigned DO values = 1 h and included in the set of high confidence lethal compounds

for this cell line. Despite the ambiguous curve fits, manual inspection indicated that the computed DR values were representative of

the initial maximal rate of cell death for these three compounds and used in subsequent comparative analyses.

Estimation of Expected Drug Combination Effects

From LF curves we computed AUC and LFmax values for populations treated with DMSO alone (D), library compound alone (L) or TMZ

alone (T). LFmax and AUC values are obtained directly from LF scores and do not require curve fitting, which is inappropriate for con-

ditions that induce minimal lethality. Using either AUC or LFmax values as inputs, we computed the expected compound interaction

(CIe) between TMZ and each library compound using the formula: CIe = L + (T-D). DAUC and DLFmax values were computed as the

difference between the expected interaction, CIe, computed as described above, and the observed AUCor LFmax for the combination

of TMZ and each library compound. Enhancing interactions had positive DAUC and DLFmax values and suppressive interactions had

negativeDAUC andDLFmax values. Significant compound interactions were identified using twomethods. In onemethod,DAUC and

DLFmax scores for the 87 control conditions were used to establish 99% confidence thresholds (mean + 3 standard deviations) re-

sulting in thresholds of jDAUCj > 8.8, jDLFmaxj > 0.23. When applied to our dataset, these thresholds excluded all control treatments,

as expected. The second method, DAUC values for each compound were used as input for CSEA analysis, as described below.

Compound Set Enrichment Analysis (CSEA)

CSEA was performed as described (Liu et al., 2013; Shaw et al., 2011). From the library of 1,833 bioactive compounds, 428 have no

knownmammalian target. Of the remaining 1,405 compounds, we could assign 1,082 into one of 70 different target classes withR 5

members (median = 10.5) on the basis of known or putative molecular targets. Target assignments weremade on the basis of manual

annotation of each compound, together with information provided by the library supplier (SelleckChem). For the purposes of CSEA,

compounds were assigned to single groups on the basis of the best target (i.e. target against which the compound showed the great-

est potency) using data made available on the SelleckChem website. Certain inhibitors were grouped into larger superfamilies (re-

ceptor tyrosine kinase (RTK) inhibitors or non-receptor tyrosine kinase inhibitors (NRTK)). These and other compounds likely inhibit

more than one target in cells. For CSEA analysis we did not remove compounds whose behavior were outliers relative to other mem-

bers of the same group (e.g. epoxomicin relative to other proteasome inhibitors). CSEA analysis was performed using the

GSEAPreranked module (genepattern.broadinstitute.org). LFmax values were used in separate analyses as ranking variables. Default
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settings were employed with the exception of the ‘min gene set size’, which was set equal to 5, which experience suggested was the

minimum required to obtain sufficient statistical power to accurately distinguish between classes.

Identification of Rapid Onset Lethal (ROL) and Slow Onset Lethal (SOL) Compounds

ROL and SOL compounds were identified using data collected from the profiling of the 1,833-member bioactive compound library in

T98GN and U-2 OSN populations, described above. LF curves for all high-confidence lethal compounds identified in both experi-

ments were parameterized using LED models and DO parameter values extracted. As noted, certain compounds were near-instan-

taneously lethal in T98GN cells (BGT226, elaiophylin, dioscin), as determined by visual inspection. DO values could not be computed

and in these cases DO were arbitrarily set to 1 h. Compounds were ranked according to DO values and those in the bottom 25%

percentile were considered ROL compounds, while those above the 75% percentile were considered SOL compounds.

Analysis of ROL Cell Death Modulatability
Modulatability of cell death was assessed using WTN and DKON MEFs. Cells were treated with lethal compounds and monitored

every 2 h for 48 h using STACK. Lethal compounds were tested in 10-point, 2-fold dose-response series: elaiophylin (high concen-

tration: 20 mM), BGT226 (high concentration: 20 mM), pacritinib (high concentration: 20 mM), zinc pyrithione (ZP, high concentration:

20 mM). Btz (high concentration: 1 mM) and erastin (high concentration: 20 mM) served as controls for apoptotic and non-apoptotic cell

death. Cell death with and without the pan-caspase inhibitor Q-VD-OPh was also analyzed every 2 h for 48 h using STACK and the

following concentration of each ROL or control compound: elaiophylin (312 nM), BGT226 (312 nM), pacritinib (5 mM), zinc pyrithione

(1.25 mM), bortezomib (200 nM) or erastin (63 nM). LF scores and AUC values were computed for each compound concentration as

described above.

Seahorse Assay
Metabolic profiles over time were analyzed using Seahorse technology. A549N or T98GN cells were seeded at 10,000 cells/well into

Seahorse XFp cell culture miniplates in a final volume of 80 mL, briefly spun at 500 RPM, and allowed to settle overnight at 37�C and

5% CO2. 200 mL of XF calibrant (pH 7.4) was added to an XFp extracellular flux cartridge and left at 37�C in the absence of CO2. The

next day, cells were washed twice with 200 mL of Seahorse medium (XF Base Medium Minimal DMEM, 25 mM glucose, 1.0 mM so-

dium pyruvate, 4 mM glutamine, pH 7.4). After washing, each well was incubated in 180 mL Seahorse medium. At this point, the wells

were imaged using the IncuCyte to obtain mKate2+ live cell counts that were used for normalization. The cell culture miniplate was

allowed to incubate at 37�C in the absence of CO2 for one hour prior to the beginning of the experiment. Test compounds were pre-

pared at 10x in Seahorsemedium in a final volume of 20 mL in the XFp extracellular flux cartridge to be injected later in the experiment.

Oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) wasmonitored every six minutes for 60minutes pre-com-

pound injection and for 420 minutes post-compound injection (FCCP/Oligomycin stressor mix final concentration = 2/1 mM and ZP

final concentration = 10 mM). ZP-induced cell death was not appreciable over the course of this experiment and OCR and ECARwere

therefore normalized to cell number at t = 0, measured by counting live cell numbers by imaging (see above).

Measurements of Intracellular Metal Levels
Measurements were performed at the Stanford Environmental Measurements Facility. Measurements were carried out using induc-

tively coupled plasma mass spectrometry (ICP-MS) with an XSERIES 2 ICP-MS (Thermo Scientific, USA). Samples were run along

with four serially diluted standards of Fe, Cu, and Zn in 2% nitric acid and 2% nitric acid blank. Standards were obtained as 1 mg/mL

stocks in 2% nitric acid from ACROSOrganics (Fe and Cu, AC196051000 and AC195931000) or CertiPrep (Zn, PLZN2-2Y). Samples

were collected from A549N and T98GN cells seeded at 250,000 cell/well in 6-well dishes at a final volume of 2 mL. The next day, cells

were washed once with warmHBSS, followed by addition of fresh media (or fresh media supplemented with ethyl pyruvate) ± drug or

vehicle. For conditions with ethyl pyruvate, the same DMEM medium used to culture cells was used to produce a stock of 20 mM

ethyl-pyruvate supplemented media. Cells were treated for 2 h followed by wash with ice cold HBSS and lysed in 500 mL of redistilled

70% nitric acid (R 99.999%, Sigma) for 16-20 h. Samples were subsequently diluted to 2% nitric acid using HPLC Grade submicron

filtered water (Fisher Scientific).

Measurement of ATP Levels
The day before compound addition, 40 mL of cells were seeded into a 384-well plate at a concentration of 1,500 cells/well. The next

day, cells were treated with vehicle control or test compounds for a given length of time followed by a 30 min incubation at room

temperature to equilibrate the plate to room temperature. After the equilibration to room temperature, 40 mL of CellTiter-Glo reagent

(Promega) was added to each well and mixed for 2 min. The mixture was allowed to equilibrate for an additional 10 minutes prior to

taking a luminescencemeasurement. Luminescencewasmeasured using a Cytation3multimode plate reader (BioTek,Winooski, VT,

USA) set to luminescence, optics position = top, gain = 135. ATP values are expressed as a percentage of the DMSO control.

QUANTIFICATION AND STATISTICAL ANALYSIS

Lethal fraction scoring was performed using Excel 14.6.0. LED curve fitting was performed using Prism 6.0h. Images were processed

using Adobe Photoshop (Adobe Systems, San Jose, CA). Figureswere assembled using Adobe Illustrator. Graphing and all statistical
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analyses were performed using Prism 6.0h. Except where noted, all data represent mean ± S.D of three biological replicates. Addi-

tional statistical details are found in the Results, STAR Methods, and Figure legends.

DATA AVAILABILITY

For the 1,833-member bioactive compound screens in U-2 OSN and T98GN cells (both DMSO only and temozolomide (TMZ)-treated)

all live and dead cell counts, as well as calculated lethal fraction scores and AUC values, are available online via the Mendeley Data

repository (http://dx.doi.org/10.17632/3pnv5wh5jm.1).
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