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Abstract

Background: Epithelial ovarian cancer (EOC) is the fifth leading cause of cancer death among women in the
United States (5 % of cancer deaths). The standard treatment for patients with advanced EOC is initial debulking
surgery followed by carboplatin-paclitaxel combination chemotherapy. Unfortunately, with chemotherapy most
patients relapse and die resulting in a five-year overall survival around 45 %. Thus, finding novel therapeutics for
treating EOC is essential. Connectivity Mapping (CMAP) has been used widely in cancer drug discovery and
generally has relied on cancer cell line gene expression and drug phenotype data. Therefore, we took a CMAP
approach based on tumor information and clinical endpoints from high grade serous EOC patients.

Methods: We determined tumor gene expression signatures (e.g., sets of genes) associated with time to recurrence
(with and without adjustment for additional clinical covariates) among patients within TCGA (n = 407) and, separately,
from the Mayo Clinic (n = 326). Each gene signature was inputted into CMAP software (Broad Institute) to determine a
set of drugs for which our signature “matches” the “reference” signature, and drugs that overlapped between the
CMAP analyses and the two studies were carried forward for validation studies involving drug screens on a set of 10
EOC cell lines.

Results: Of the 11 drugs carried forward, five (mitoxantrone, podophyllotoxin, wortmannin, doxorubicin, and 17-AAG)
were known a priori to be cytotoxics and were indeed shown to effect EOC cell viability.

Conclusions: Future research is needed to investigate the use of these CMAP and similar analyses for determining
combination therapies that might work synergistically to kill cancer cells and to apply this in silico bioinformatics
approach using clinical outcomes to other cancer drug screening studies.

Keywords: Gene expression signature, Time to recurrence, Bioinformatics, Connectivity Mapping, Drug discovery,
Ovarian cancer

Background
The American Cancer Society estimates that in 2015, ap-
proximately 14,180 women will die of epithelial ovarian
cancer (EOC) in the United States, with 21,290 estimated
new cases [1]. Since early ovarian cancer shows few symp-
toms, the vast majority of patients continue to be diag-
nosed with advanced stage disease, where the prognosis is
poor with 5-year survival rate around 27 %. The standard

treatment protocol for patients with advanced EOC is an
initial debulking surgery, followed by carboplatin-paclitaxel
combination chemotherapy. Platinating agents, such as cis-
platin, carboplatin, and oxaliplatin, are able to interact with
DNA to form monoadducts, intra- and interstrand cross-
links, and DNA-protein crosslinks, ultimately resulting in
cell death. Taxane agents are widely used chemotherapeu-
tic drugs often in combination with platinating agents. Tax-
anes, such as paclitaxel and docetaxel, block cell division
by binding to β-tubulin, stabilizing the microtubules, lead-
ing to cell death [2, 3]. Although over 70 % of ovarian
cancer patients are initially sensitive to the combination
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therapy consisting of a platinum agent and a taxane, the
majority will experience relapse and subsequent resistance
to the therapy [4]. Thus, finding new therapeutic options
for treating patients with EOC is essential.
One approach that has been used widely in cancer

drug discovery is Connectivity Mapping [5]. The Con-
nectivity Map (also known as “CMAP”) is a collection of
genome-wide transcriptional expression data from cul-
tured human cells treated with bioactive small molecules
analyzed using pattern-matching algorithms that discover
relationships between the drugs, gene expression changes,
and the phenotypes. This computational approach has
greatly facilitated drug screening studies, as CMAP con-
tains more than 7000 gene expression profiles for approxi-
mately 1300 compounds (https://www.broadinstitute.org/
cmap/). In particular, it has been employed in many studies
for discovering repurposing drugs against common dis-
eases, including diabetes and Alzheimer’s disease [5], and
for treating solid tumors, including those associated with
colon cancer [6], breast cancer [7], and lung adenocarcin-
oma [8]. The basic approach for CMAP-based drug discov-
ery studies is the identification of disease- (or phenotype)
associated genomic signatures that inversely correlate with
perturbation in the genomic signature associated with the
administration of molecules or drugs [5]. In these studies,
the essence of the protocol – the individual-gene CMAP
approach – for identifying drugs for treating a specific dis-
ease is straightforward: find a set of differentially expressed
genes (DEGs) obtained by comparing two sets – e.g., con-
trol and patient tissues – of gene expression microarrays,
score the match between the DEG set and genomic
profiles of drugs given by CMAP, and rank the drugs by
score [9, 10]. The candidate drugs are those with the high-
est absolute scores.
However, these studies have some limitations. First, the

list of DEGs used in the CMAP analysis is usually based on
a relatively small number of biological replicates (i.e., a
handful of cancer cell lines). Additionally, the number of
cell lines in CMAP exposed to the compounds is limited to
only a handful of cancer cell lines from breast, leukemia,
prostate and melanoma, with each compound usually
tested on only a few cell lines. Furthermore, recent studies
have shown potential issues with use of cancer cell lines in
terms of the lack of rigor in the estimation of drug re-
sponse phenotypes in cell lines [11] and the lack of con-
cordance between cell lines and human genomic profiles
[12]. Among EOC cell lines, a recent study has found that
IGROV1 is most probably not of the high grade serous
subtype as it is often quoted [13]. To address the limita-
tions of previous DEG selection based on cancer cell lines,
we determined our DEGs based on two large collections of
tumor gene expression data collected on high grade serous
EOC patients for whom clinical endpoints were available
(407 and 326 cases in TGCA and Mayo Clinic studies,

respectively). To determine the most relevant DEGs, we
characterized the associations between gene expression
and time to recurrence. We hypothesized that the potential
therapeutic drugs for EOC are those that have a gene ex-
pression profile that are related to the gene expression
signature related to clinical outcome of time to recurrence
(TTR). Following CMAP analyses, we then tested key
genes on ten EOC cell lines to assess the ability of the can-
didate drugs to effectively kill EOC cells.

Methods
TCGA ovarian cancer study
As part of TCGA, research collected and assessed
genome-wide gene expression data on 518 samples using
the Agilent Expression 244 K microarray. Gene expres-
sion and clinical data were downloaded from the
TCGA Data Portal (https://tcga-data.nci.nih.gov/tcga/
dataAccessMatrix.htm) on September 17, 2012. Gene
expression data were lowess normalized with replicate
probes for a gene collapsed by averaging across the
probes. Of 518 serous cyst adenocarcinoma with Agilent
gene expression data, 449 of the tumors were classified as
high-grade. Thus, restricting to high grade serous tumors
and removing the samples in the TCGA that were part of
the Mayo Clinic study, we included 407 tumors in our
analysis. Summary of the TCGA participants are presented
in Table 1.

Mayo clinic ovarian cancer study
Briefly, eligible cases were ascertained between 1992 and
2009 at the Mayo Clinic within 1 year of diagnosis with
pathologically confirmed primary invasive high-grade
serous EOC. Progression and vital status were obtained
from the Mayo Clinic Tumor Registry, electronic medical
records, and active patient contact. All cases provided

Table 1 Summary of TCGA and Mayo Clinic Studies

TCGA (n = 407) Mayo Clinic (N = 326)

Time to recurrence/Progression free survival

Median TTR 15.3 (months) 13.0 (months)

No recurrence/No progression 49.87 (%) 31.59 (%)

Recurrence/Progression 48.40 (%) 67.79 (%)

Stage

I 3.19 (%) 1.53 (%)

II 4.17 (%) 3.06 (%)

III or IV 92.13 (%) 95.39 (%)

Age

Mean, [Q1, median, Q3] 59.8 [53, 60, 68] 58.3 [50, 55.5, 66.25]

Surgical debulking

Optimal 65.11 (%) 73.92 (%)

Sub-optimal 23.83 (%) 24.84 (%)
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written informed consent for use of their tissues and med-
ical records in research; all protocols were approved by
the Mayo Clinic Institutional Review Board. RNA from
fresh frozen tumors of each patient was extracted and
assessed using Agilent Whole Human Genome 4 × 44 K
Expression Arrays as previously described [14, 15]. The
program “ComBat” was used to correct for batch-effects
due to Cy5 and Cy3 labeling differences observed among
experimental batches [16]. Summary of 326 Mayo Clinic
participants are presented in Table 1. Data used in this
study can be found at the Gene Expression Omibus
(GSE73614, GSE53963 and GSE74357).

Statistical and CMAP analyses
Cox proportional hazard models were used to assess the
association of gene expression (gene-by-gene) with time
to recurrence (TTR), by study with and without adjust-
ment for age at diagnosis, stage, and debulking status.
DEG probes were selected for inclusion in the CMAP
analysis if p < 0.01 for the unadjusted analyses and p <
0.005 for the covariate adjusted analyses; different
thresholds were used as CMAP (Broad Institute) has a
limit on the number of features included in any signa-
ture. These set of probes were then mapped to genes
and then to the Affymetrix ID, as CMAP is based on
Affymetrix probes/features. We conducted CMAP ana-
lysis on individual genes with hazard ratio (HR) > 1
coded as “positively” associated and genes with HR < 1
coded as “negatively” associated with TTR to determine
a set of drugs for which our gene signatures matches the
“reference” signature (either positively or negatively).
Clustering of samples based on gene expression levels
was completed using recursive partition mixture models
using the R package RPMM [17], restricting the number
of levels to a maximum of 2.

In vitro drug screens
In vitro drug cytotoxicity assays were conducted to deter-
mine which of the drugs highlighted by CMAP analysis af-
fected viability of EOC cells. The drugs were purchased
from the following vendors: cotinine, 3-nitropropionic acid,
adiphenine hydrochloride, ethosuximide, and podophyllo-
toxin (Sigma); cephalexin and mitoxantrone (Selleckchem);
clemizole (BioVision); wortmannin, doxorubicin, and 17-
AAG (LC Laboratories). Upon receipt, dimethyl sulfoxide
(DMSO) was used to prepare 10 mM stock solutions for
all of the drugs except for cephalexin, which was prepared
at a 5 mM concentration due to reduced solubility. Single-
use aliquots of the stock drug solutions were made and
stored at −80 °C.
All cell lines used in this study were obtained or derived

at the Fox Chase Cancer Center (Philadelphia, PA). Details
of the origin of the EOC cell lines (N = 10: A1847, A2780,
C30, CP70, OVCAR4, OVCAR5, OVCAR8, OVCAR10,

PEO4, and SKOV3) have been previously reported [18–
20]. Each cell line was grown in RPMI 1640 (Corning Cell-
gro) containing 2 mM L-glutamine and supplemented
with 10 % FBS (Gibco), 100 I.U./mL penicillin (Corning
Cellgro), 100 μg/mL streptomycin (Corning Cellgro), and
7.5 μg/mL insulin (Gibco) and maintained at 37 °C in a
humidified atmosphere with 5 % CO2. Cell lines were
grown to 80 % confluency, harvested and seeded into 96-
well plates at concentrations of 2000 to 4000 cells per well
in a total volume of 95 μL. Twenty-four hours after seed-
ing, drug compounds were prepared using cell growth
media and 5 μL of each were added to the seeded cells in
the 96-well plates. A Microlab Nimbus 96 pipetting robot
(Hamilton) was used to prepare the serial dilutions and for
addition to the cell lines. The final drug solutions consisted
of eight concentrations ranging from 20 to 0.0012 μM
(serial four-fold dilutions). Vehicle-only wells were in-
cluded on each plate to serve as interplate normalization
controls.
Seventy-two hours following drug addition, a 1/5th

volume of CellTiter Blue reagent (Promega) was added
directly to each well using a Matrix WellMate (Thermo
Scientific). The plates were incubated at 37 °C for 150 min
and the fluorescent signal was measured using an Infinite®
M200 Pro microplate reader (Tecan). The ratio of the
fluorescent signal in a drug treated well to that of the
average fluorescent signal from the vehicle treated wells
on each plate multiplied by 100 was used to calculate
cell viability for each drug treated well for each cell line.
A minimum of two biological replicates were performed
for each cell line. The viability data were subjected to non-
linear regression analysis and IC50 values calculated using
Prism 5 software (GraphPad). All data in the viability
curves are reported as mean ± standard error of the mean
(SEM).

Results
Genes associated with clinical outcome
To determine the gene signatures to use in CMAP analyses,
we determined the set of probes (and corresponding gene)
associated with TTR by fitting separate Cox proportional
hazards models within each study (N = 407 for TCGA, N =
326 for Mayo Clinic) with and without adjustment for age
at diagnosis, stage, and debulking status. Comparing the
genes associated with TTR with no adjustment for covari-
ates at the 0.05 significance level and the same direction of
effect resulted in 143 genes in common between TCGA
and Mayo studies; 96 genes had a hazard ratio (HR) < 1
(high expression associated with better outcome) and 47
genes had a HR > 1 (high expression associated with worse
outcome). In contrast, the adjusted analyses resulted in 186
genes in common (p < 0.05, HR in same direction), with
128 genes having a HR < 1 and 58 having a HR > 1. Table 2
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presents the genes with p < 0.01 in both studies (with same
direction of effect) for both the adjusted and unadjusted
analyses.
To further evaluate that these sets of genes were pre-

dictive of outcome, we clustered the samples based on the
expression levels of the genes in common between the
two studies using recursive partitioning mixture models
(RPMM). TCGA and Mayo Clinic samples were clustered
separately on the set of genes in common between the
two studies (with and without adjusting for covariates).
The resulting cluster assignments were then assessed for
association with survival using log-rank tests. The log-
rank p-values for testing cluster assignment with TTR
were 0.012 and 0.015 for TCGA and Mayo Clinic studies
(genes in common with no adjustment for covariates)
(Additional file 1: Figure S1) and 0.016 and 0.112 based
on clustering of genes from model adjusting for covariates
(Additional file 2: Figure S2).

Connectivity Mapping
CMAP analysis was completed for each of the 4 DEG sets
(TCGA/Unadjusted Analyses; TCGA/Adjusted Analyses;
Mayo/Unadjusted Analyses; Mayo/Adjusted Analyses)
using the CMAP software developed at the Broad Institute
(https://www.broadinstitute.org/cmap/). This resulted in
(p < 0.05): 78, 84, 85 and 111 drugs signatures were found
to be either negatively or positively related with gene

signatures based on analysis of TCGA (unadjusted),
TCGA (adjusted), Mayo Clinic (unadjusted) and Mayo
Clinic (adjusted), respectively. We then looked at the over-
lap of the compounds found in both studies and found
that 9 (and 5) compounds were in common between
CMAP analyses based on the covariate adjusted (un-
adjusted) signature, as illustrated in Fig. 1. This set of com-
pounds included the following: tanespimycin (17-AAG),
ethosuxiumide, cotinine, clemizole, 0175029–0000

Table 2 Genes associated with epithelial ovarian cancer time to recurrence in analysis of tumors from the TCGA and Mayo Clinic (p< 0.01)
for both adjusted and unadjusted analyses

Analysis Gene TCGA study Mayo Clinic study

HR 95 % CI P HR 95 % CI P

Adjusted for covariates PTPRCAP 0.71 (0.56,0.89) 0.004 0.14 (0.04,0.40) 3.6E-04

UBASH3A 0.78 (0.65,0.92) 0.005 0.19 (0.06,0.50) 0.001

PPBP 1.18 (1.04,1.33) 0.009 5.79 (1.94,17.21) 0.002

PVRIG 0.73 (0.58,0.91) 0.005 0.28 (0.12,0.62) 0.002

IGKV3-20 0.85 (0.76,0.93) 0.001 0.41 (0.23,0.72) 0.002

FCRL5 0.84 (0.74,0.95) 0.008 0.30 (0.14,0.65) 0.002

ITK 0.83 (0.72,0.95) 0.008 0.30 (0.13,0.66) 0.003

IGHV3OR16-12 0.85 (0.77,0.94) 0.002 0.47 (0.28,0.78) 0.004

VANGL1 0.67 (0.51,0.88) 0.004 0.23 (0.08,0.62) 0.004

SLC16A8 1.23 (1.06,1.43) 0.006 4.55 (1.58,13.01) 0.005

IGKV3-20 0.89 (0.82,0.96) 0.004 0.50 (0.30,0.83) 0.007

ACAP1 0.78 (0.65,0.93) 0.006 0.23 (0.07,0.68) 0.008

Unadjusted for covariates VANGL1 0.73 (0.58,0.92) 0.008 0.26 (0.09,0.69) 0.007

CD38 0.88 (0.80,0.96) 0.007 0.47 (0.28,0.76) 0.003

ELA1 1.42 (1.10,1.82) 0.006 4.93 (1.97,12.32) 0.001

PSME2 0.76 (0.62,0.91) 0.004 0.16 (0.04,0.53) 0.003

UBD 0.92 (0.87,0.97) 0.004 0.59 (0.43,0.81) 0.001

Note, three Agilent probes did not have a current HUGO gene ID and are not presented in the table

Fig. 1 Venn diagram depicting the overlap of compounds/drugs
found from the CMAP analyses
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(unadjusted for covariates); wortmannin, 3-
nitropropionic acid, adiphenine, cephaeline, doxorubicin,
podophyllotoxin, mitoxantrone, cephalexin, 5182598
(adjusted for covariates). In vitro drug screens were
completed using these drugs with the exception of
0175029–0000 and 5182598 for which commercial
sources were not found and cephaeline which was cost
prohibitive.

In vitro drug screens
In order to experimentally determine the effect of the
eleven CMAP-highlighted drugs on EOC cell viability,
we conducted in vitro dose response studies on a set of
10 EOC cell lines. A significant reduction in cell viability
following 72 h of drug treatment was observed for five of
these compounds: mitoxantrone, podophyllotoxin, wort-
mannin, doxorubicin, and 17-AAG (Fig. 2). These 5 drugs
were known to be cytotoxic and therefore were expected
to affect EOC cell growth and viability based on their
mechanisms of action [21–28]. The six remaining drugs
failed to show in vitro anti-cancer activity, consistent with
prior reports of minimal cytotoxic capacity [29–34]. The
dose response data for all 11 drugs across the 10 EOC cell
lines can be found in Additional file 3: Figure S3, Additional
file 4: Figure S4, Additional file 5: Figure S5, Additional file
6: Figure S6, Additional file 7: Figure S7, Additional file 8:

Figure S8, Additional file 9: Figure S9, Additional file 10:
Figure S10, Additional file 11: Figure S11, Additional file
12: Figure S12 and Additional file 13: Figure S13.

Discussion
In this manuscript we have presented a bioinformatics ap-
proach for connectivity mapping based on clinical outcomes
collected on a large patient population followed by func-
tional validation of the identified drugs. The strengths of
this approach are: non-reliance on a signature determined
based on a small number of cancer cell lines; use clinically
relevant outcomes that are directly tied to response (i.e.,
time to recurrence or overall survival); large clinical studies
that provide the ability to look at overlap between CMAP
determined drugs; functional validation to confirm the abil-
ity of the discovered drugs to kill ovarian cancer cells. The
choice of applying this approach to ovarian cancer was by
design, as EOC treatment is somewhat uniform where the
majority of patients undergo tumor debulking or cytoreduc-
tion surgery to remove as much of the tumor as possible,
followed by platinum-taxane combination chemotherapy.
Application of this approach to other cancers with less
standard treatments will introduce heterogeneity into
clinical outcome and would need to be accounted for in
the statistical analyses (if possible). Nevertheless, there
are still limitations to CMAP analysis, which include:
small sample size contributing to the CMAP database,

Fig. 2 Drug dose response curves for five compounds for ovarian cancer cell line A2780: mitoxantrone, podophyllotoxin, wortmannin, doxorubicin,
and 17-AAG
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with none of the cell lines having been derived from
EOC; “batch effects” in CMAP cell line cultures [35];
and the signatures are based on only gene expression
measured using microarrays.
This study is a proof of principle that clinical out-

comes from large studies (of which one is publically
available for research) have the ability to be leveraged
for drug discovery. Of the 11 drugs carried forward, we
a priori hypothesized that 5 of these drugs would affect
EOC cell viability (mitoxantrone, podophyllotoxin, wort-
mannin, doxorubicin, and 17-AAG), for which all 5
showed an ability to kill EOC cells in vitro (cell lines
were treated using serial dilutions of the drugs (0 to
20 μM) for 72 h followed by measuring cell viability
using the CellTiter-Blue assay). Their anti-cancer activities
have been studied extensively and mitoxantrone and
doxorubicin have been used in the treatment of a
variety of cancers [36–43]. However, the CMAP ana-
lyses of the TCGA and Mayo Clinic studies did not
identify the two most commonly used therapies for
EOC, with none of the 11 drugs identified having
similar structure or mechanism of action to carboplatin or
paclitaxel. However, three of the 11 compounds are topo-
isomerase II inhibitors (doxorubicin, podophyllotoxin,
mitoxantrone), a class of drugs used often in the treatment
of breast cancer, lung cancer, testicular cancer, lymphomas
and sarcomas [44].
The natural products podophyllotoxin, wortmannin,

and 17-AAG have proven highly toxic to human subjects
but subsequent analogues such as etoposide, PX-866, and
ganetespib, respectively, have decreased side effects and
are currently being investigated in the treatment of EOC
[13, 45, 46]. The six compounds that failed to exhibit sig-
nificant in vitro cytotoxicity across the EOC cell line panel
belong to classes of drugs related to central nervous sys-
tem pathways, exhibit antimicrobial activity or are re-
quired in high micromolar concentrations which may not
be physiologically achievable. Interestingly, adiphenine
was also identified using CMAP analysis as an adjuvant
therapy to treat the psychological distress associated with
EOC diagnosis [33]. While novel drugs were not identi-
fied, a filtered list of six was obtained for directed in vitro
testing.

Conclusions
Future research is needed to investigate the use of these
CMAP–like analyses for determining combination ther-
apies that might work synergistically to kill cancer cells
and to apply this in silico bioinformatics approach
using clinical outcomes to other cancer drug screen-
ing studies. Last of all, CMAP analyses only determines
candidate drugs that can be tested in future studies
with no information provided on the optimal dose in

humans; research into the optimal therapeutic dosage
needs to be considered in the planning of future drug
studies [47].
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