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Abstract

Glycosphingolipid metabolism relies on selective recruitment of the pleckstrin homology (PH) domains of
FAPP proteins to the trans-Golgi network. The mechanism involved is unclear but requires recognition of
phosphatidylinositol-4-phosphate (PI4P) within the Golgi membrane. We investigated the molecular basis of
FAPP1-PH domain interactions with PI4P bilayers in liposome sedimentation and membrane partitioning
assays. Our data reveals a mechanism in which FAPP-PH proteins preferentially target PI4P-containing liquid
disordered membranes, while liquid ordered membranes were disfavored. Additionally, NMR spectroscopy
was used to identify the binding determinants responsible for recognizing trans-Golgi network-like bicelles
including phosphoinositide and neighboring lipid molecules. Membrane penetration by the FAPP1-PH domain
was mediated by an exposed, conserved hydrophobic wedge next to the PI4P recognition site and ringed by a
network of complementary polar residues and basic charges. Our data illuminates how insertion of a
structured loop provides selectivity for sensing membrane fluidity and targeting to defined membrane zones
and organelles. The determinants of this membrane sensing process are conserved across the CERT, OSBP
and FAPP family. Hence, lipid gradients not only result in differential membrane ordering along the secretory
pathway but also specifically localize diverse proteins through recognition of ensembles of lipid ligands in
dynamic and deformable bilayers in order to promote anterograde trafficking.

© 2015 Published by Elsevier Ltd.
Introduction

Diverse biological membranes within cells selec-
tively recruit thousands of proteins using a phosphor-
inositide recognition code [1]. Such proteins
transiently associate with membrane surfaces by
recognizing phospholipids that exhibit organelle-spe-
cific distributions [2]. Cognate membrane complexes
are further stabilized by complementary electrostatics
[3–5] and insertion of nearby motifs of aliphatic,
aromatic [6–8] or lipidated residues [9–11] into the
bilayer. However, whether bilayer dynamics play a
determining role in membrane recognition remains
hed by Elsevier Ltd.
poorly defined [12,13], necessitating a closer exami-
nation of the structures of functional complexes.
The largest superfamily of membrane interactive

proteins is that defined by the presence of pleckstrin
homology (PH) domains. Its members include CERT,
OSBP and FAPP (COF) proteins, which traffic cer-
amide, sterols andglycosphingolipids at the trans-Golgi
network (TGN) [14–17]. Among them, the FAPP1 and
FAPP2 proteins have become the best understood
paradigms for recruitment to membranes enriched in
phosphatidylinositol-4-phosphate (PI4P), which is the
most abundantmonophosphorylated inositol lipid in the
Golgi membrane. Hence, their PH domains are often
J. Mol. Biol. (2015) 427, 966–981
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Fig. 1. The gradients of lipids are shown for the
anterograde pathway from the endoplasmic reticulum
(ER), where many are synthesized, through the Golgi
where they and proteins are modified, to the plasma
membrane (PM), and would influence the degree of lipid
disorder in each compartment. The relative amount of PI4P
within the compartments is illustrated by red dots.
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used as Golgi markers in cellular studies [18,19].
However, the distribution of PI4P is not restricted to
theGolgi apparatus, as this lipid signal also has critical
roles beyond the Golgi [20]. Moreover, although
COF family PH domains recognize PI4P physio-
logically [21–23], their in vitroPI specificities are not
absolute [24–28]. This conundrum suggests that
other conserved determinants also help to selectively
attract these proteins to different organelle surfaces.
The twoFAPPproteins differmainly by the presence

of a glycolipid transfer protein domain that is only
found in the C-terminus of FAPP2 and that has a
critical role in the intra-Golgi vectorial transfer of
glucosylceramide [21,29] and in the synthesis of the
globo series of glycosphingolipids [30]. Both their
FAPP-PH domains possess a similar hydrophobic
wedge that inserts into bilayers, although its contri-
bution to ligand specificity remains unclear [27,28,31].
An analogous membrane insertion loop (MIL) is
found in PI-binding FYVE and PX domains [32–34],
with FAPP-PH domains being distinguished by
Golgi-specific functions including membrane tubule
budding and vesiculation [21,31].
Here, the structural basis of lipid-bilayer recognition

by FAPP1 is resolved by analysis of protein partitioning
into liposomal systems, mutagenesis and NMR. This
yields experimental restraints for calculating the struc-
ture of ternary complexes of the protein with bound
micelle and lipid ligand, thus explaining the requirement
for loosely packed bilayers and pinpointing determi-
nants for nonspecific and specific membrane engage-
ment. We propose that modulation of PIs between
microenvironments of varying membrane fluidity, as
determined by the ratio of lipids including cholesterol
and sphingomyelin (Fig. 1), provides a general switch
for whether embedded lipid signals are accessible for
protein recruitment at specific sub-organelle
compartments.
Results

Specificity of FAPP-PH for disordered bilayers

In order to determine whether membrane order is
important for FAPP-PH PI4P binding, we systemati-
cally explored sectors of the composition-dependent
phase diagram of ternary lipid mixtures consisting of
dioleoyl phosphatidylcholine (DOPC), cholesterol and
brain sphingomyelin (BSM) [35–37] and supplemented
themwith 2%dipalmitoyl PI4P unless stated otherwise.
Membrane order was validated with giant unilamellar
vesicles (GUVs), employing fluorescent lifetime im-
ages with environmentally sensitive di-4-ANEPPDHQ
(di-4) membrane reporter (Fig. S1). It was evident
that association with PI4P-containing membranes
decreased as ratios of both cholesterol and BSM
increased. In pure liquid ordered (Lo) liposomes
formed of an equimolar ratio of BSM and cholesterol,
the FAPP1-PH domain interacted only marginally
with the membrane (Fig. 2a).The most attractive
PI4P-containing membranes were those forming
liquid disordered (Ld) membrane phases (Fig. 2a),
suggesting that lipid packing and dynamics could
play a key role in efficient PI4P recognition and
binding.
Next,we investigated thebilayer packingdensity asa

function of the acyl chain saturation. Theheadgroups of
dipalmitoyl phosphatidylcholine (DPPC), palmitoyl-
oleyl phosphatidylcholine (POPC) and DOPC were
compared as they occupy areas of 64, 68 and 72 nm2,
respectively, with concomitant effects on bilayer
thickness [38]. Binding of FAPP1 to the set of PI4P/
phosphatidylcholine (PC)-based liposomes revealed
the highest level of binding to loosely packed DOPC
vesicles: intermediate-density POPC vesicles exhibit-
ed medium binding, while the most densely packed
DPPC vesicles excluded the FAPP1-PH (Fig. 2a).
Thus, the lipid packing density was inversely related to
protein binding. Hence, the membrane specificity of
FAPP1-PH combines both essential chemical (i.e.,
PI4P) and physical (i.e., membrane fluidity) factors.
Interestingly, this preference was also found with the
full-length construct of FAPP2 (Fig. 2a), indicating
broader relevance across the COF family.
The specific role played by membrane order in

FAPP interactions with PI4P was further validated by
fluorescent microscopy using GUVs. An equimolar
ratio of cholesterol, DOPC and BSM was used to
follow FAPP1-PH binding to PI4P in membranes
exhibiting coexisting Ld and Lo domains. The fluo-
rescent cholera toxin subunit (CTx) bound to the
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Fig. 2. FAPP-PH binds specifically to liquid disordered (Ld) phases. (a) Liposomes composed of BSM, cholesterol and
DOPC ratios were selected from different regions of the ternary lipid phase diagram, as shown on the right, and the amount
of bound protein was quantified by gel imaging. Unless stated otherwise, all liposomes contained 2% (mol/mol) PI4P. Data
from liposomes composed of DPPC, POPC, DOPC or a mixture of DPPC, DOPC and cholesterol (5:3:2) is plotted on the
left. The percentage of liposome-bound FAPP1-PH is indicated for each lipid composition. The phase diagram of DOPC,
BSM and cholesterol mixtures is shown on the right. The regions of liquid ordered and disordered phases are indicated as
Lo and Ld, respectively. These two phases coexist in vesicles formed by the lipid mixtures situated within the gray zone.
The zone of transition between ordered and disordered vesicles is indicated in blue. (b) Disordered phases were monitored
by the fluorescence signals of TR-DHPE and overlapped with FAPP1-PHgreen. The bars in the confocal images represent
10 μm. (c) The PI4P ligand was included as either natural (brain extract) or synthetic (C8 or C16) forms in the vesicles
formed by a 1:1:1 BSM:Chol:DOPC mixture and resulted in similar FAPP1-PH protein localization to the segregated
disordered phase as revealed by the specific dyes TR-DHPE (Ld) and Oregon Green CTx (Lo) as seen by confocal
microscopy.
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ganglioside GM1 [39] and Texas Red-dihexadeca-
noyl phosphoethanolamine (TR-DHPE) [40] were
used to mark the respective membrane domains,
with the latter label preferentially partitioning to Ld
domains (Fig. 2b). The presence of protein was
detected by visualizing FAPP1-PH labeled with
Oregon Green on an exposed unique cysteine
(Cys37) (FAPP1-PHgreen) (Fig. 2c). The FAPP1-
PHgreen protein localized strictly to Ld domains in
phase-segregated GUVs, consistent with the lipo-
some sedimentation experiments (Fig. 2a). Further-
more, this localization to disordered regions could be
similarly mediated by either naturally (brain extract) or
synthetically derived PI4P (dipalmitoyl or dioctanoyl)
(Fig. 2c). This indicates that the phosphoinositide
headgroup (rather than the respective acyl chains that
differed) was the primary determinant of PI4P
recognition in liquid disordered membrane regions.
Binding to vesicles could be initiated by injecting
soluble short-chain dioctanoyl (C8) PI4P molecules
into the chamber of reaction. In particular, an
approximate 4-fold enhancement in protein colocali-
zation with the disordered phase was observed after
addition of 2 μM C8-PI4P. This increase can be
attributed in part to the inherent preference of short
acyl chain lipids for disordered phases [41]. Thus,
FAPP1-PH associates with Ld membrane phases
potentially due to a favorable access to lipid head-
group, nonstereospecific contacts with PC molecules
or suitable dynamics therein. Once bound to the
disordered bilayer, the protein can conceivably diffuse
laterally until it recognizes the headgroup of its PI4P
ligand, thus forming a stable complex.
Bicelles mimic the bilayer for FAPP1-PH binding

Before characterizing the structural basis of
dynamic bilayer recognition, we needed to select
an appropriate bilayer mimic for quantitative analysis
of the interactions. The binding of the FAPP1-PH
domains with micelles and bicelles were compared
as these both mimic biological bilayers and have
different chain lengths and curvature properties.
FAPP1-PH exhibited similar patterns of amide signal
changes when bound to PI4P in the presence of
micelles composed of n-dodecyl phosphocholine
(DPC) or bicelles composed of dimyristoyl phospha-
tidylcholine (DMPC) and dihexanoyl phosphatidyl-
choline (DH6PC), indicating consistent insertion
modes. Moreover, their ligand affinities were similar,
with the dispersed methyl resonance migrations
yielding C8-PI4P dissociation constants of 5.3 ±
2.4 μM and 8.8 ± 3.3 μM, (Fig. S2a and b), compa-
rable to the affinity of small unilamellar vesicles
(Fig. 6c). Furthermore, the chemical shifts of the
protein bound to isotropic bicelles matched those of
the state saturated with DPC:Chaps {3-[(3-cholami-
dopropyl)dimethylammonio]propanesulfonic acid}
micelles. Minor spectral differences were observed
between PI4P:micelle and PI4P:bicelle titrations.
These arose largely from the absence of assigned
cross-peaks from the bound states due to over-
lapped or broadened resonances. Thus, no signifi-
cant difference was evident between micelle and
bicelle complexes, and either state suitably repre-
sents how FAPP1-PH orients on bilayers via
dynamic membrane insertion.



Fig. 3. NMR signal changes induced in FAPP1-PH by
PI4P-independent bilayer binding. A transient interaction is
evident from significant CSPs consistently induced by
interactions with bicellar (a) and micellar (b) systems as
measured from 15N HSQC experiments in the absence of
PI4P. This defined the active residues in HADDOCK
calculations of the protein nonspecifically bound to the
micelle. Backbone and side-chain resonance changes are
indicated by black and red bars, respectively. (c) Distance
restraints used to calculate the structural model were taken
from PREs using doxyl-broadened FAPP1-PH reso-
nances. Those restraints from 15N and 13C HSQC spectra
are shown above and below the x-axes. Residues with
significantly perturbed resonances (mean + standard de-
viation) are indicated. The inset cartoons show the relevant
complex of protein, 5-doxyl PC and micelle in black, purple
and gray, respectively, for each panel.
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Resolving multistep bicelle binding by NMR

Previous studies have investigated how FAPP1-PH
interacts with soluble PI4P molecules and associates
with micelles [27], providing a basis for elucidating
how the protein assembles on fluid bilayers that
contain PI4P. In order to distinguish the determinants
of transient nonspecific bilayer association and stable
recognition of bilayer-embedded PI4P, we compared
the binary and ternary complexes formed by
FAPP1-PH, PI4P and micelles or bicelles in solution.
This approach allowed identification of the multiple
structural states formed by the FAPP1-PH domain as
it interacts with membrane mimics of increasing size
and complexity. First, the forms of FAPP1-PH
saturated with micelle and bicelle were contrasted to
identify the respective interactions and to model the
PI4P-specific complexes formed. To gain maximal
resolution, we characterized each state by monitoring
backbone and side chain 1H, 13C and 15N signals
upon addition of soluble PI4P and stable bicelle
formulations. Entry of the free state from solution into
the bilayer was examined by tracking methyl and
amide peaks as bicelles were added stepwise. This
allowed the progressive changes induced by each
binding event to be mapped at atomic resolution
(Fig. 3a and b), showing that the interaction was
principally mediated by the β1-β2 hairpin that spans
FAPP1-PH residues Trp8 to Gln16, as was confirmed
by results fromparamagnetic relaxation enhancement
(PRE) studies (Fig. 3c) [27]. Moreover, the data
indicated a second, distal interaction site that includes
the β6-β7 sheet residues Met61, Glu62, Leu63, Ile64,
Glu68, His70 and Tyr72. Together, this provides
experimental evidence for two-pronged stable inser-
tion via the β1-β2 and β6-β7 elements.
Next, the structural orientation of the FAPP1-PH

protein on bilayers was characterized by adding
C8-PI4P to the protein:micelle (Fig. 4a and d) and
protein:bicelle assemblies (Fig. 4c and e). Intermolec-
ular distance restraints were derived from doxylated
lipid molecules (Figs. 3c and 4b) and soluble gadolin-
ium agents (Fig. 5a and b). This illuminated themultiple
states of free, nonspecifically PC associated and PI4P
specifically bilayer bound protein, respectively. The
experimental setup used to elucidate the structure of
the micelle complex was adapted for bicelles, with the
association being followed using PREs induced by
paramagnetic gadolinium to identify solvent-exposed
groups in the free, bicelle and bicelle-PI4P complexes.
This general protocol provides a broadly applicable
basis for experimentally based elucidation and valida-
tion of multiple bilayer-complexed structural states.

Structural basis of PI4P-bilayer recognition

Having defined the conditions for elucidating the
consensus solution structure in bicelles and micelles,
the wild-type FAPP1-PH domain responsible for
dynamic bilayer insertion was determined by triple-
resonance NMR methods. Its structure is largely
identical with the mutant version solved previously
(PDB ID 2KCJ), with chemical shift differences being
localized to the wild-type Cys that had been previously
replaced with a Ser to minimize opportunities for
cross-linking. The structure of the monomeric native
FAPP1-PH domain was def ined by 1448



Fig. 4. Interaction of FAPP1-PH with PI4P assemblies. (a) The structural characterization of the specific complex was based on perturbations of FAPP1-PH
resonances after addition of C8-PI4P to samples containing 15N/13C-labeled protein and either micelles or (c) bicelles. Ch mical shift changes of 15NH (top) and 13CH3
(bottom) groups after addition of C8-PI4P to samples containing 4 mM DPC:Chaps (3:1) micelles or 5% DH6PC/DMPC icelles are shown (b) as are PREs following
addition of 5-doxyl PC-bound micelle versus PC:micelle controls, with the spin label shown as a red molecule in the carto . Black and red bars indicate backbone and
side-chain signal perturbations, respectively. The dissociation constants of FAPP1-PH for C8-PI4P-containing micelles an bicelles are 5.3 ± 2.4 μM and 8.8 ± 3.3 μM,
respectively. Groups involved in micelle (d) and (e) bicelle binding based on CSPs and PREs upon PI4P addition are in cated as blue, green and red spheres in the
structure for those groups with perturbed 15N backbone, 15N side-chain and 13C methyl signals, respectively. Significant REs are represented by large spheres. The
13C HSQC spectra of FAPP1-PH from ligand titrations are superimposed with peaks of key residues labeled (f). The tr ces for the micelle-bound (red) and micelle/
PI4P-bound state (blue) are shown in the left panel for Lys74ε side-chain resonance. Peak intensities for the diamagnetic a d paramagnetic samples (red and yellow for
micelle bound; blue and cyan for micelle/PI4P) are shown in the right panel.
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distance-derived nuclear Overhauser enhancement
(NOE), 128 dihedral angle and 34 hydrogen bond
restraints, with the structural statistics being summa-
rized in Table 1.
The micelle-complexed structure of the FAPP1-PH

domain was solved using the HADDOCK program.
The restraints included 16 intermolecular distances
measured from 13C methyl and 15N amide-resolved
PREs to the micelle, as obtained with the 5-doxyl
PC spin label (Tables 1 and 2). A flexible zone of
neighboring residues was defined as those that
exhibited substantial chemical shift changes. Solvent
accessibility data was derived from titrating in the
gadolinium agent into 15N and 13C isotopically labeled
protein samples. Bicelles composed of diheptanoyl
phosphatidylcholine (DH7PC) and DMPC (q = 0.3,
0.25%) were added stepwise. The advantage of the
new bicelle formulation over conventional bicelles
composed of DH6PC and DMPC formulations was
apparent as small increments could be added from
initial concentrations as low as 0.1% (w/v). This
enabled monitoring of the bicelle-bound state during
titration experiments. This formulation was optimized
for low concentrations [43] and adapted herein to track
protein resonances while conserving a signal that was
sufficiently strong and resolved to be useful for PRE
analysis. The solvent-exposed andmicelle-embedded
protein surfaces were mapped by analysis of PRE
data collected using water-soluble gadolinium or doxyl
PC spin labels, respectively, thus defining their
complementary areas (Fig. 5a–c). Interfacial residues
were defined as being those with resonances that
were broadened by both gadolinium and doxylated
phospholipid. Together, this provided cross-validated
definition of the FAPP1-PH protein groups that were
exposed, interfacial or deeply inserted.
The structural model of the complex based on PRE

data reveals that membrane recruitment of FAPP1
involved deep insertion of Tyr11 and Leu12. Their side
chainspenetrated furthest into the hydrophobic interior
of the bilayer, while they formed a solvent-exposed
extremity at the tip of the structured β1-β2 loop in
solution. Their side chains orient beneath the surface
of phospholipid headgroups in either themicelle or the
bicelle complex in the presence or absence of PI4P,
indicating a constitutive role in insertion. Moreover, the
specific PI4P recognition event uniquely involved
insertion of the side chain of β7 residue Lys74. This
Fig. 5. The solvent-exposed surface of bilayer-bound
FAPP1-PH mapped by PREs. (a) The gadodiamide
(Gd3+)-induced PREs are expressed as a percentage of
reduction of the signal intensity observed in paramagnetic
versus diamagnetic samples. The intensity reduction of
backbone amide signals of each residue of the free state of
FAPP1-PH (top) and the bicelle-bound (middle) and
bicelle:PI4P-complexed (bottom) forms are shown. The
residues indicated in the lower panel and colored blue
exhibit a significant change in solvent accessibility upon
formation of the bicelle:PI4P:FAPP1-PH complex. (b) The
protection factors for 13C methyl groups of FAPP1-PH
bound to PI4P-containing micelle are plotted. The color
gradient indicates the degree of solvent protection. The
y-axis corresponds to the solvent accessibility calculated
with NACCESS for the free state of FAPP1-PH. Protected
methyl groups are indicated with vertical lines. (c) The
one-dimensional traces were extracted from two-dimen-
sional 13C HSQC spectra (red, diamagnetic; blue, para-
magnetic) showing the Met73Cε resonance of the free
state, FAPP1-PH:micelle and FAPP1-PH:micelle:PI4P
complexes. (d) Electrostatic maps of the FAPP1-PH
structure calculated with APBS [42] showing the isocon-
tours and superimposed with the surface accessible area
(between −1 and 1 kT/e). FAPP1-PH is oriented as in
Fig. 4d.



Table 1. NMR and refinement statistics for solution structures and micelle-docked structures.

Solution structure of FAPP1-PH

NMR distance and dihedral constraints
Distance constraints
Total NOE 1448
Unambiguous 1223
Long range (|i − j| N 5) 235
Medium (4 ≤ |i − j| ≤ 5) 41
Short (2 ≤ |i − j| ≤ 3) 83
Sequential/intra 864
Ambiguous 225
Hydrogen bonds 34
Total dihedral angle restraints 128
ϕ, ψ 64, 64

Structure statistics
Violations
Distance constraints (Å) (N0.5 Å) 0
Dihedral angle constraints (°) 0
Deviations from idealized geometry
Bond lengths (Å) 0.006573 ± 0.000167
Bond angles (°) 0.791 ± 0.016
Impropers (°) 1.777 ± 0.089
Average pairwise RMSDa (Å)
Heavy, backbone 0.86, 0.32

Energies (kcal/mol)
Enoe 442.77 ± 10.85
Ecdih 6.25 ± 1.63
Ebond 74.39 ± 3.73
Eimproper 109.62 ± 8.94
Eangle 295.85 ± 12.06
Evdw −185.74 ± 26.89
Edihe 582.8 ± 7.53

Ramachandran statisticsb

Residues in core regions (%) 73.86
Residues in allowed regions (%) 22.33
Residues in generous regions (%) 2.5
Residues in disallowed regions (%) 1.4

Docked structures Micelle Micelle:PI4P
Intermolecular energies
Buried surface (Å2) 1208.22 ± 125.87 1232.09 ± 117.94
Evdw (kcal/mol) −58.50 ± 5.26 −59.29 ± 6.05
Eelec (kcal/mol) −80.48 ± 39.22 −122.72 ± 33.94
Insertion
θ (°) 16.80 ± 4.50 14.23 ± 4.32
ψ (°) 166.52 ± 16.29 153.52 ± 30.39
r (mass centers) (Å) 38.47 ± 1.00 37.14 ± 1.13
Interactionsc 8, 10, 11, 12, 13, 15, 16 8, 10, 11, 12, 13, 15, 16, 74

a RMSD is calculated for secondary structural elements including residues 1–7, 16–22, 26–30, 43–44, 50–53, 61–64, 69–73 and 78–94
calculated for ten representative structures.

b Non-glycine residues.
c More than 7 of the 20 models. Boldfaced residues are hydrogen bonded between the headgroups of DPC andW8ε, N10δ, T13, W15ε,

Q16ε and K74ε.
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basic residue is conserved across the COF protein
family members and interfaces peripherally with the
bilayer (Fig. 4f), thus contributing to the higher affinity
of the PI4P-containing membrane complex.
The deep burial of the Leu12 and Thr13 methyl

groups was confirmed by the substantial changes in
solvent accessibility observed after gadolinium addi-
tion (Fig. 5b). These residues were encircled by an
extensive network of interfacial contacts mediated by
polar backbone and side-chain groups of residues in
the β1-β2 loop including Asn10 andGln16, which form
hydrogen bonds and ionic interactions with PC head-
groups (Table 1). The Trp8 and Trp15 residues act as
aromatic buttresses against the membrane surface
(Fig. 6a and b), delimiting the total buried surface area
of either 1208 Å2 or 1232 Å2 between the protein and
the micelle in the absence or presence of PI4P,
respectively. This insertion element is orderedwith the
exception of the most exposed Leu12 residue based
on model-free relaxation analysis (Fig. S3) [45].



Table 2. Experimental data used for deriving structural restraints to model the FAPP1-PH interaction with PI4P membrane
mimicking micelles in the HADDOCK calculations based on an established approach [44].

973Dynamic membrane recognition by FAPP proteins
Together, this reveals that overlapping structured
protein surfaces mediate transient nonspecific and
PI4P-specific binding of fluid-bilayer phases, respec-
tively. Thus, we infer that initial, weak bilayer entry of
the β1-β2 loop with primarily loosely packed PC
molecules leads to a PI4P-dependent adjustment of
the orientation of the inserted complex.
The structural organization with the ternary

FAPP1-PH:PI4P:bilayer complex can be ascertained
by NMR following C8–PI4P addition to the micelle
complex. Phosphoinositide addition results in the
unprecedented stable micelle burial of the Met73
side chain in the β7 strand. Considering the absence
of 5-doxyl PRE effects in the Met73 resonances, this
change in exposure could be due to its enclosure
within the stable PI4P:micelle complex (Fig. 5c). This
indicates a PI4P ligand-dependent bilayer interaction
by this structured element, with the proximal Leu63
and Ile64 residues also engaged based on their
chemical shift changes. This ternary complex exhibits
a slower off-rate and extensive zone of perturbations
midway between the most deeply inserted β1-β2
extremity and the exposed termini (Fig. 4d and e). The
large perturbed zone observed in the PI4P-specific
complex involves all the β strands including β1:
Val4-Tyr6, β2:Thr13, β3:Leu27,Tyr29, β4:Gly42, β5:
Glu50, β6:Met6,Leu63,Ile64 and β7:Phe71-Lys74
residues (Fig. 4d and e). The micelle-based burial of
these residues was confirmed by changes in solvent
accessibility upon addition of the paramagnetic gado-
diamide agent, with a broader interface being buried
when PI4P was present, including His54, Thr59,
Glu62, Phe71 and Lys74 (Fig. 5a). Together, with the
entire lower half of the protein exhibiting chemical shift
perturbations (CSPs) and the interfacial position of the
β5-β7 sheet, this indicates that specific recognition of
PI4P-containing bilayers involves stable rather than
transient dipping of the hydrophobic β1-β2 tip into the
bilayer interior [27] and adjustment to a more
substantially buried state.
In addition to the hydrophobic contribution, it is well

known that electrostatics also influence the orientation



Fig. 6. FAPP1-PHmembrane binding. (a) Comparison of pure and PI4P-containingmicelle-docked structural orientations.
Back-calculated distances (micelle center to protein backbone HNs) for the 20 best models of micelle-bound (gray) and
PI4P-bound (black) models are represented. Micelle and protein centers are indicated by purple dotted lines, the radial
distribution [g(r)] of phosphorus (yellow) and nitrogen (blue) atoms of the choline headgroups is indicated by small spheres.
The radial distributions were calculated from a 200-ps free molecular dynamic calculations in explicit water within Xplor. The
structure closest to the mean is shown with the distance between the protein and micelle centers labeled, as well as the
change in insertion angle uponPI4Pbinding by themicelle complex. The β1 and β2 strands are indicated. (b) A detailedmodel
of FAPP1-PHshowing the side chains (balls and sticks) is shown. Themicelle surface (orange) and β strands are indicated as
are the key interfacial residues. The hydrophobic wedge is delimited by Trp8 and Gln16 and is oriented such that β2 is fully
inserted into micelles while β1 is interfacial. Residues with significant PREs are shown. (c) Mutations of membrane inserting
residues reduce affinities for PI4P-containing membranes based on liposome sedimentation assays and SPR. The
cosedimented fraction and relative response units are plotted for different FAPP1-PH concentrations.
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of proteins on membrane surfaces. Indeed, this is
reflected by the dipolar nature of the FAPP1-PH
surface (Fig. 5d). Two distinct positively charged
isocontours facing themicellar interface correspond to
the PI4P binding pocket and elements of the β7 strand
including the Lys74 side chain [23]. The resulting
electrostatic complementarily could account for the
2-fold increase in binding affinity observed when
negatively charged phosphatidylserine is added to the
membrane to stabilize the specific PI4P-containing
complex [27]. Indeed, analogous preferences for
phosphatidylserine co-association is apparent in
PI3P-specific FYVE and PX domains [46,47], indicat-
able 3. Dissociation constants measured for FAPP1-PH
embrane interactions.

rotein Dissociation constant estimated from

Liposome sedimentation assays (μM) SPR (μM)

T 2.05 ± 0.90 2.68 ± 0.71
8E N1000 N1000
8Y N1000 N1000
10T 5.12 ± 1.07 17.32 ± 5.74
13F 5.1 n.d.a

13N 5.86 ± 0.83 5.15 ± 0.54
15Y 2.67 ± 0.09 2.48 ± 0.61
15E n.d.a n.d.a

16R N1000 N1000
18L N1000 N1000

a Not determined due to the instability of the mutant.
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ing a wider role for this accessory phospholipid as a
codeterminant of intracellular membrane binding.
The ring of charge encircling FAPP1's hydropho-

bic MIL appears to delimit the depth of membrane
insertion. In order to estimate the depth and angle of
protein penetration into the bilayer in nonspecific and
specific membrane engagement, we compared how
FAPP1-PH inserted into PI4P-free versus PI4P-con-
taining micelles, taking advantage of the sensitivity
of the NMR method to even transient interactions.
The methyl and amide PRE data yielded average
distances of 38.47 Å and 37.14 Å between protein
and micelle centers, indicating similar depths in the
specific and nonspecific membrane complexes,
respectively (Figs. 3, 4 and 6a). That is, the specific
complex penetrated only an angstrom deeper and its
insertion angle was only slightly more acute. This
can be attributed to PI4P-containing micelle contacts
formed by Lys74, the neighboring β5-β6 and β6-β7
loops and the extremity of the β1-β2 hairpin. PI4P
binding by the micelle-saturated complex also in-
duced alterations in hydrophobic core packing of the
protein based on perturbations of methyl resonances
of either partially buried Val4 and Ile64 residues or
completely buried Leu5, Ile44, Leu63, Ile65 and Met73
residues. We propose that this network reinforces the
slowlyexchangingPI4P-bilayer complexand increases
the residency time and local concentration of protein
molecules on membranes. Upon bilayer association,
the hydrophobicwedgeof theFAPP1-PHdomain is not
symmetrically inserted. Rather, it is oriented such that



Fig. 7. Membrane binding model. The proposed states of FAPP proteins at the TGN involve nonspecific insertion into
the loosely packed bilayer regions (green), diffusing laterally until a PI4P molecule (red) is encountered and bound, thus
increasing the residency time such that protein accumulates and boosting lateral pressure in the bilayer. The proposed
membrane recognition by the PH domain and Arf1 interaction could be extended to other COF family proteins to drive
specific organelle targeting. Lipids transferred by COF proteins to the membrane increase the membrane rigidity and result
in a progressive release of the PH domain of the COF proteins, thus halting the activity of COF proteins.
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the backbone residues prior to the β2 strand (Thr13,
Gly14 and Trp15) deeply insert into micelles while the
backbone of conserved residues following the β1
strand binds the interfacial inositide headgroup via
Trp8 and Thr9 contacts. The local ring of basic charge
cappedbyanacidic patch (Fig. 5d) provides long-range
guidance for the protein's entry into the membrane.
Together, this allows progressive binding and tilting of
the bilayer complex and could have implications for
interaction of downstreamprotein partners suchasArf1
with TGN vesiculation machinery [48].

Mutational analysis of membrane binding deter-
minants

The residues identified in the structural model as
membrane interacting were mutated to delineate their
roles. All mutants were tested for being structurally
intact and functionally altered (Table S1). Binding of
FAPP-PH proteins to membranes was measured
using liposome sedimentation experiments. The
most deeply inserted Tyr11 and Leu12 side chains
are known to be essential [31], but the contributions of
other residues of the loop, including Trp8, Asn10,
Thr13, Trp15 and Gln16 residues, have not been
determined. Each Trp residue extends its side chain to
pack against the micelle surface and hence was
mutated to anAla, aGlu or a Tyr residue. TheW8Eand
W8Y mutants of FAPP1-PH did not bind detectably
(Table 3 andFig. 6c), indicating that Trp8makes critical
contributions in both nonspecific and specific mem-
brane complexes. This is consistent with its interfacial
positions in the binary and ternary structures with PI4P
and micelle.
Mutations of the nonconserved Thr13 residue were

designed to conserve the hydrogen bond acceptor
(T13N) and to alter the exposed hydrophobicity (T13F).
Both mutations were tolerated with only minor reduc-
tions in binding by a factor of 2, consistent with the
peripheral role of Thr13 in nonspecific insertion.
Moreover, Thr13 is not conserved across the COF
family, which maintains basic or small hydrophilic
residues at this position [27]. Conversely, the N10T
mutation compromised bilayer affinity by a small but
significant degree, as can be explained by the insertion
of its side chain betweenPC-based headgroupsand its
role in hydrogen bonding (Table 2). The substitution of
Trp15 with a Tyr (but not Glu, which results in unstable
protein) was tolerated, consistent with the critical role of
its aromatic ring in insertion and stabilizing the β1-β2
hairpin. The replacement of Gln16 with an Arg residue
was originally intended to mimic the polybasic motif
found in PH domains that recognizes 3-phosphoinosi-
tides [49]. Unexpectedly, this mutation reduced lipo-
someassociation, independent of thephosphoinositide
species used. The major role of Gln16, which is strictly
conserved across the mammalian COF family, can be
explained by the hydrogen bonds it consistently forms
with PC molecules when fully docked.
Together, this reveals that liquid disordered

membrane interaction is mediated by essentially
the entire breadth of the ordered β1-β2 hairpin loop
(Fig. S3), which is ordered except for the hydropho-
bic tip. In particular, the hydrophobic extremity
offered by Tyr11 and Leu12 is bordered by nones-
sential Asn10 and Thr13 contacts, and the highly
conserved aromatic groups contributed by Trp8 and
Trp15 form critical struts against disordered bilayer
surfaces. We propose that sliding of this structured
loop through the leaflet allows the protein to diffuse in
the two dimensional plane of a membrane, with
electrostatic forces supporting the protein's position-
ing on the bilayer for PI headgroup entry. Once a
PI4P molecule is bound, the mobility of the resulting
complex would be reduced by the additional bound
bulk, and the conformational dynamics in the
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protein-bilayer complex including in angle and depth
of insertion and core packing would shift to that of the
fully occupied state. The accompanying displace-
ment of lipid molecules and resulting perturbation of
local pressure and surface area created could
contribute to the deformation of membranes during
budding or tubulation events.
Discussion

The ability of FAPP proteins to specifically
recognize PI4P-enriched Golgi membranes is de-
termined by a set of unique features that are
revealed here by NMR. The mechanism involves
proximal penetration of the structured MIL residues
and PI4P acyl chains into a liquid disordered bilayer,
introducing substantial protein volume into the
leaflet. This insertion would naturally yield positive
local curvature and hence would be opposed by the
tendency of cholesterol to induce negative mem-
brane curvature. The FAPP1-PH domain inserts
deeply via not only the longest structured MIL
studied to date but also by the β7 strand, as
supported in the case of FAPP1 by 13C- and
15N-resolved backbone and side-chain groups for
micelle- or bicelle-embedded and soluble spin labels.
The use of both heteronuclei for gathering PRE
restraints and the use of optimized bicelles yielded
the highest density of experimental protein-bilayer
structural restraints to date to our knowledge.
TGN-bilayer binding mediated by FAPP1-PH is

initiated by nonspecific phospholipid interaction
followed by specific binding to a PI4P molecule.
These events differ surprisingly little in the depth or
angle of bilayer penetration. The most significant
differences are the structuring of the PI4P site and
conformational adjustment within the core as the
ligand is bound. This yields a slowly exchanging
complex with a binding affinity of 5 μM for the
monomeric protein. The fact that the MIL is largely
structured is unanticipated given its long and
irregular nature, as is the β7 binding element, yet
could explain their specificity for dynamic bilayers.
The interfacial region involves functionally critical
tryptophans of the loop and cationic residues that
engage the surface of the bilayer and support the
orientation of the embedded protein. In particular,
Trp8 and Trp15 form struts at either extremity of the
MIL, while Lys74 is opposite the PI4P binding site
and forms hydrogen bonds with the membrane
surface. These aromatic and basic residues are
highly conserved in the FAPP family and occupy
similar positions around the basic patch of the CERT
structure [23], inferring a common mechanism.
This general FAPP-bilayer binding mechanism is

depicted in Fig. 7. The process involves the
electrostatic approach and insertion of the FAPP1
protein into disordered bilayer within a restricted
membrane territory [50]. The resulting reorientation
of lipids within the leaflet includes displacement of
dynamic lipid allowing PI4P molecules to be more
readily encountered before being stably bound
within the appropriately positioned PI4P site. The
resulting asymmetric insertion of protein bulk within
the bilayer would induce local positive bilayer
curvature. Interestingly, the insertion depth and
angle are only slightly perturbed by the transition from
nonspecific to specific complex; instead, the original
contacts become reinforced, resulting in the tighter
FAPP:PI4P complex becoming specifically localized
and crowdedwithin dynamic TGN zones. This process
leaves a complementary site on the FAPP1-PH
domain largely available for Arf1 docking [48] that is
necessary but not sufficient to localize FAPPs at the
TGN [21]. We note that, while preparing this manu-
script, a study addressed the mechanism of yeast Arf1
binding to human FAPP1-PH [51] and is largely
consistent with our results.
The crucial role of the various COF proteins in lipid

trafficking [16,29,30,52] suggests that they share
recognition determinants. The commonalities are
most obvious for CERT [17,53] and OSBP1 [54],
localization of which has also been linked to Golgi
membrane composition. The key residues are shared
across the COF family, inferring similar assembly and
membrane deformation processes. In phase-segre-
gated GUVs, the preference seen for Ld domains is
such that these proteins could all be essentially
completely directed only to disordered phases
(Fig. 7). In vitro, such proteins would become crowded
until reaching a critical concentration where buds form
and tubules can then emanate. Biological membrane
tubule formation by FAPPs has yet to be confirmed
under physiological conditions. Nonetheless, tubules
have been observed in vitro [31] and in cell-based
assays [18,21], and specific roles of contributing
residues can now be tested in cellular TGN systems.
Broader applicability of the general mechanism to
other systems can be envisaged. Lipid enzymes may
be similarly regulated by bilayer order. For example,
PI4P kinase type IIα, which produces half of the PI4P
at the Golgi, is active once bound there within rigid
microdomains [55].
In summary, we propose that membrane malleability

represents a fundamental means of controlling protein
recruitment to specific regions of organelles such as
Golgi subcompartments. In endomembranes, lipid
concentration gradients across the secretory pathway
are found in opposingdirections (Fig. 1),with the ratio of
glycerophospholipids decreasing and sphingolipids
and cholesterol increasing [56,57]. Moreover, the
saturation of the acyl chains for different lipid species
increases along the anterograde pathway [58]. As a
result, both the membrane rigidity and thickness are
enhanced as one travels from the endoplasmic
reticulum toward the plasma membrane, with the
TGN having an intermediate lipid composition prone
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to phase separations [59]. Hence, a membrane-order-
dependent PI4P binding model would account for the
absence of FAPPs at the plasma membrane despite
pools of PI4P having been identified there [18].
Furthermore, changes of membrane rigidity could
efficiently control the recruitment of COF proteins to
the TGN to maintain local lipid homeostasis. Thus, as
sphingolipids and cholesterol are recruited at the TGN
by leaving vesicles, reduced membrane packing
densities would lead to an enhanced lipid transfer
rate of FAPP2 (glucosylceramide), CERT (ceramide)
and OSBP (sterol) that would progressively re-estab-
lish the rigidity, acting as a negative feedback loop on
the lipid transfer proteins. In other words, PI4P
molecules in membranes with opposing membrane
fluidities could simplistically represent “on” and “off”
signaling states for recruiting FAPP proteins to regions
in the TGN membrane gradients. Although PI4P is
present in other subcellular membranes where it
critically contributes to other biological processes [20],
it may not be visible there to these proteins due to its
ordered microenvironment. An analogous phenome-
non has been invoked for recognition of the sphingo-
lipid GM1 by cholera toxin B subunit [60,61]. The
presence of cholesterol in the membranes forced GM1
headgroups to bend, into a conformational state where
the toxin no longer recognizes them. Thus, we propose
that this principle of binary lipid order recognition states
also applies to other phosphoinositides and lipids,
which may be similarly visible or invisible to binding
partners depending on the local conformational dy-
namics of the membrane [62].

Materials and Methods

Protein expression

FAPP1-PH was expressed in a pGEX-6P-1 vector (GE
Healthcare, Little Chalfont, UK) as a glutathione S-trans-
ferase (GST) fusion protein and purified as previously
described [27]. Uniform isotopic labeling with 15N or
13C/15N was carried out in M9 media. The cell lysate was
passed through a GST Trap column and the protein was
cleaved overnight using Prescission protease (GE Health-
care). The FAPP1-PH protein was separated by anion
exchange using a linear gradient of NaCl from 0 to 0.5 M
[20 mM Tris (pH 8)] and was exchanged into 20 mM Tris
(pH 7), 100 mM NaCl, 1 mM DTT and 1 mM NaN3 (TB).
Themutants were generated with a QuikChange lightening
kit (Stratagene, Santa Clara, USA) and verified by DNA
sequencing. The proteins were expressed and purified as
previously described [27] using optimized salt gradients to
separate FAPP and GST proteins during the final purifica-
tion step.
Protein fluorescent tagging

Conjugation of FAPP1-PH protein to the Oregon Green
maleimide fluorescent probe (Life Technologies, Carlsbad,
USA) was performed according to the manufacturer's
protocols. Briefly, complete reduction of disulfide bonds
was achieved in TB with 10 mM DTT for 1 h. Subsequent-
ly, the sample of 100 μM protein was buffer exchanged
with TB and incubated for 4 h at room temperature with
maleimide fluorescent probe in a 10× excess and purified
on PD-10 columns.
Lipid binding assays

Lipids, detergents and natural extract of PI4P (brain
extract) were purchased from Avanti Polar Lipids (Ala-
baster, USA) and synthetic phosphoinositides including
C8-PI4P were from Echelon Biosciences (Salt Lake City,
USA). Micelle and bicelle titration experiments were
carried out by stepwise additions of buffer-matched
stock solutions into NMR samples. Bicelles were gener-
ated using DMPC and DH6PC mixed in chloroform, dried
under a flux of nitrogen and left under high vacuum
overnight. A stock solution at 25% was prepared and
diluted with the protein immediately before each ex-
periment. Bicelles with a ratio q = 0.25 were used at a 5%
(w/v) to prevent excessive line broadening and alignment
of the bicelles with the magnetic field. Bicelles containing
diheptanoyl phosphatidylcholine and DMPC (q = 0.3,
0.25%) were prepared for acquisition of 15N-edited
heteronuclear single quantum coherence (HSQC)
experiments.
Lipids were mixed in chloroform, the organic solvent

was successively dried under a nitrogen stream and
samples were placed under high vacuum overnight. The
lipids were resuspended in TB to a lipid concentration of
2 mM, and suspension was submitted to 10 cycles of
freezing in liquid N2 and thawing at 52 °C. For the assays,
75 μL of the lipid suspension was mixed with 25 μL of
protein at 8 μM and incubated at room temperature for
10 min. The pellet collected after centrifugation
(55,000 rpm, 4 °C, 10 min) with a TLA-55 rotor (Beckman
Coulter, HighWycombe, UK)waswashed three timeswith
TB and resuspended in 100 μL. The supernatant and the
pellet of each assay were loaded on precast 26-well
Criterion gel (Biorad, Hemel Hempstead, UK). After
electrophoresis, the proteins were stained by Coomassie
blue and quantified by gel imaging (Syngene, Cambridge,
UK). Values represent the mean and standard deviations
from triplicate experiments.

Surface plasmon resonance

The surface plasmon resonance (SPR) experiments
were carried out in TB on a Biacore 3000 instrument using
sensor Chip L1 (GE Healthcare). A suspension of 1 g/L
lipids DOPC:PI4P (98:2) or DOPC was submitted to 10
FAT cycles and extruded through a 100-nm membrane
(Avestin). A total of 150 μL of this lipid suspensions were
coated on the lanes at 5 μL/min, washed with 10 mM
NaOH and coated with 25 μL bovine serum albumin and
were cleaned again with 10 mM NaOH. Equilibrium
measurements were carried out at 2–3 μL/min, and the
sensograms were obtained for an analyte range 0.1–
20 μM and corrected by subtracting the reference signals
from the DOPC lanes. The apparent dissociation constant
was deduced from the fitting B = Bmax·Pfree/(Kd + Pfree)
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where B is the binding, Bmax is the maximum signal under
saturation and Pfree is the concentration of protein present
in the solution injected. In all experiments, the response of
FAPP1-PHWT at 20 μM was chosen as standard to
normalize the response of the mutants.
GUV formation

A volume of 25 μL of the lipid mixtures at 1 g/L in
chloroform was spread on ITO-coated slides (Sigma) and
dried under vacuum for at least 2 h. GUVs were grown at
52 °C in 150 mM sucrose. A sinusoidal current (1.1 Vpp,
12 Hz) was applied for 2–3 h followed by a squared current
(1.5 Vpp, 5 Hz). The GUVs were collected and resuspend-
ed in a Tris buffer [10 mM (pH 7); 50 mM NaCl and 1 mM
DTT]. Chambers were built using double-sided tapes and
the passivation of the surface was achieved with a solution
containing 1 mg/mL of casein. After washing with resus-
pending buffer, we injected the GUVs into the observation
cell. Alternatively, glass bottom dishes (MatTek, Ashland,
USA) were used for microscopic observations to allow
uniform injections across the sample. To visualize different
phases, we included GM1 at 1% (mol/mol) in the lipid
mixtures. The fluorescent probes cholera toxin subunit B
tagged with AlexaFluor 488 (CTx) (Life Technologies) and
Texas Red 1,2-dihexadecanoyl-sn-glycero-3-pho-
sphoethanolamine (TR-DHPE) (Life Technologies) were
used to mark ordered and disordered phases, respectively.
The image processing and were performed within ImageJ
software [63]. Green-emitting dyes were excited at 488 nm
and red-emitting dyes were excited at 543 nm.
Fluorescence lifetime imaging microscopy

GUVs were prepared according to established methods
[64] and stained with 2 μM di-4-ANEPPDHQ (di-4) dye
(Invitrogen). Fluorescence lifetime imaging microscopy
was performed at 23 °C with an LSM 510microscope (Carl
Zeiss) equipped with a dedicated PicoQuant fluorescence
lifetime imaging microscopy system. The probe was
excited with a 473-nm pulsed laser diode (50 MHz) and
observed with a 63× oil immersion objective and fluores-
cence was collected through a 495-nm, long-wave pass
filter. Laser power was adjusted to give an average photon
rate of 104–105 photons to avoid pile-up effects. The
acquisition time was of the order of 200 s to achieve at
least 103 photons per pixel.
Thermal shift assay

In order to determine the stabilities of mutant proteins, we
measured fluorescent signals using excitation at 492 nm
and emission at 568 nm from solutions containing 4 μM
protein and SYPRO Orange (Life Technologies) in 50 mM
Hepes buffer (pH 7) and 100 mM NaCl. Signals were
followed along a linear temperature gradient between
25 °C and 95 °C. The experiments were carried out on an
MxPro3005P qPCR detection system and processed with
MxPro software (Stratagene). The unfolding transition
temperature, Tm, of each protein corresponded to the point
of inflexion of the curves [65].
Nuclear magnetic resonance spectroscopy
NMRexperimentswere acquiredat 298 Konan800-MHz
Varian INOVA spectrometer or a 600-MHz Bruker AVANCE
III spectrometer equipped with 5-mm cryogenic probes,
using samples containing 100–700 μM FAPP1-PH protein.
Slowly exchanging amide protons were identified from 15N
HSQC spectra acquired following dissolution in 99.96%
D2O. Backbone and side-chain resonances were assigned
in part by referring to those of theC94Smutant protein. NMR
experiments were run using Varian BioPack pulse se-
quences, including BEST HNCO, HNCA, HN(CO)CA and
13C-edited NOESY-HSQC (100 ms mixing time), acquired
from 13C/15N-labeled protein samples containing 10%D2O.
The 15N relaxation experiments were acquired using pulse
sequences available in the Bruker standard library and with
15N-labeled protein.
Backbone generalized order parameters squared, S2,

were determined with the model-free formalism [66,67] from
15N relaxation data using the diffusion tensor obtained for
an axially symmetric motional model. The 15N R1 and R2
relaxation rates and {1H}-15N heteronuclear NOE values for
FAPP1-PHweremeasured at a 1H frequency of 600 MHzat
298 K using established methods [68,69]. To estimate the
R1 and R2 values, we fit monoexponential two-parameter
decay functions to peak intensity versus measured relaxa-
tion delay profiles using the Analysis program from the
CcpNmr software suite [70]. NOE values were determined
from the ratio of peak intensity in the proton-saturated
spectrum versus peak intensity in the unsaturated spectrum
for a given resonance. Errors were calculated from repeat
measurements (R1 and R2) or from an analysis of back-
ground noise in the spectrum when repeat spectra were not
available. For model-free analysis, an initial estimate of the
rotational diffusion tensor was obtained from theR2/R1 ratios
of individual so-called “rigid” residues and the PDB coordi-
nates of the FAPP1-PHsolution structure using the programs
pdbinertia, r2r1_diffusion and quadric_diffusion (A. G.
Palmer, Columbia). Residues were considered rigid if they
satisfied the following criteria: (1) NOE N 0.65 and (2) of the
remaining residues, 〈R2〉 − R2,n b 1 SD (where SD is stan-
dard deviation from the mean 〈R2〉). Fitting of theR2/R1 ratios
from 51 rigid residues in total was performed using different
rotational diffusion tensors: isotropic, axial and fully aniso-
tropic with established model selection criteria [71]. Amide
proton-nitrogen bond lengths of 1.02 Å and 15N chemical
shift anisotropy of −160 ppm were assumed for all residues.
Order parameters were subsequently determined following
the flowchart of Mandel et al., using their softwareModelFree
v. 4.2 [71] and FAST ModelFree [72]. Uncertainties in the
model-free order parameters were estimated from 500 Monte
Carlo simulations.
PRE experiments were performed as described elsewhere

[27]. DPPC was substituted for 5-doxyl PC in reference
experiments to ensure that only 5-doxyl-dependent NMR
intensity differencesweremeasured. The gadodiamide agent
(Selleckchem, Newmarket, UK) was added to protein:lipid
assemblies in NMR samples from a concentrated stock
solution inNMRbuffer. Thechemical shifts perturbationswere
calculated as Δ = (Δ2

HN + αΔ2
HX)

1/2 where α is the ratio of
the magnetic ratios of nuclei (0.1 for X = 15N and 0.25 for
X = 13C). The dissociation constant Kd was calculated from
Δ = Δmax(LT + PT + Kd − [(LT + PT + Kd)

2 − 4LTPT]
1/2)/2PT

where LT and PT are the ligand and protein concentrations
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and Δ represents the chemical shift change. The CSPs were
calculated with 2 mM DPC:Chaps as a reference to account
for possible nonspecific interactions of unimolecular PC
molecules in solution. The perturbations were calculated
relative to micellar concentrations while bicelle-dependent
changes were measured in reference to a protein NMR
sample free of any lipid. The NMR spectra were processed
usingNMRPipe [73], and the resonance assignments and the
structure calculations were carried out in CcpNmr analysis
suite and Aria2 [74], respectively. The structures were
generated by restrained torsion angle dynamics in eight
iterations using Aria2. After a final water refinement, the 20
lowest-energy structures out of 100 calculated were selected
to represent the ensemble of FAPP1-PH structures (see
details in Supplementary Information). The coordinates and
resonance assignment were deposited at the PDB and
Biological Magnetic Resonance Bank [75] databases under
the identifiers 2MDX and 19508, respectively.
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